首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An experimental study on the transient power characteristics of a fuel cell generator has been conducted. The generator is hybridized by a proton exchange membrane (PEM) as the main power source and a lithium-ion battery as the secondary power source. power-conditioning module consisting of a main bidirectional converter and an auxiliary converter has been designed to manage the hybrid power of the generator that copes with fast dynamics of variable loads. Sensors embedded in the generator have measured the electrical properties dynamically. It was found that the present power-conditioning scheme has well controlled the power flow between the fuel cell stack and the battery by regulating the power flow from or to the battery. In addition, the thermal management system using pulse width modulation (PWM) schemes could limit the operation temperature of the fuel cell generator in a designed range. Furthermore, the dynamics of electrical efficiency of the generator are found to be parallel with those of the net system power. Finally, the stability and reliability of the fuel cell generator is proven by the rational dynamic behaviors of thermal and electrical properties for over 30-h demonstration.  相似文献   

2.
Using a specially designed current distribution measurement gasket in anode and thin thermocouples between the catalyst layer and gas diffusion layer (GDL) in cathode, in-plane current and temperature distributions in a proton exchange membrane fuel cell (PEMFC) have been simultaneously measured. Such simultaneous measurements are realized in a commercially available experimental PEMFC. Experiments have been conducted under different air flow rates, different hydrogen flow rates and different operating voltages, and measurement results show that there is a very good correlation between local temperature rise and local current density. Such correlations can be explained and agree well with basic thermodynamic analysis. Measurement results also show that significant difference exists between the temperatures at cathode catalyst layer/GDL interface and that in the center of cathode endplate, which is often taken as the cell operating temperature. Compared with separate measurement of local current density or temperature, simultaneous measurements of both can reveal additional information on reaction irreversibility and various transport phenomena in fuel cells.  相似文献   

3.
A finite transmission line is proposed for proton exchange membrane fuel cell reaction layer, when the faradic current is absent due to purging of Inert gas at the back of cathode and anode. Also a finite transmission line is presented when a charge transfer accrued among catalyst and electrolyte interface. The electrochemical impedances of finite transmission lines are computed using MATLAB software. Relative to the orders and types of the evaluated impedances, some relations to determine and identify the parameters of the proposed models are derived. In first model, it is shown that the electrical elements of transmission line can be extracted explicitly from the Nyquist and Bode diagrams whereas for the second one, some of the parameters cannot directly be investigated. However, using a numerical procedure, some valuable results about parameter variations are obtained.  相似文献   

4.
In this study, a kW-grade air-cooled proton exchange membrane fuel cell (PEMFC) stack with a dead-end anode (DEA) operation is designed and manufactured. The gravity-assisted drainage principle is applied for the stack to design the wettability of gas diffusion layers (GDLs) and the anode channel geometry, which can help the liquid water that diffuses to the anode to drain out of the anode porous electrode and move down the anode channel outlets. As a result, the stack can stably operate in a long purge interval of 268 s and in a short purge time of 2 s. In addition, using this design, only four small-power fans are employed to pump air to the cathode to provide oxygen for the electrochemical reaction and cool the stack. With a constant load current of 30, 45, or 60 A, the stack output voltage is experimentally tested at various cathode air flow rates (CAFRs). The local temperatures (60 measurement points) inside the stack and the pressure differences across anode channels are also monitored to understand heat dissipation and the back diffusion of liquid water. In a wide range of operating conditions, the designed stack possesses superior and stable voltage output characteristics with relatively uniform temperature distributions. The measured maximum output power is 3.83 kW, and the parasitic powers of fans are only 80~112 W.  相似文献   

5.
While the use of a high level of platinum (Pt) loading in proton exchange membrane fuel cells (PEMFCs) can amplify the trade off towards higher performance and longer lifespan for these PEMFCs, the development of PEMFC electrocatalysts with low-Pt-loadings and high-Pt-utilization is critical and the limited supply and high cost of the Pt used in PEMFC electrocatalysts necessitate a reduction in the Pt level. In order to make such electrocatalysts commercially feasible, cost-effective and innovative, catalyst synthesis methods are needed for Pt loading reduction and performance optimization. Since a Pt-deposited carbon nanotube (CNT) shows higher performance than a commercial Pt-deposited carbon black (CB) with reducing 60% Pt load per electrode area in PEMFCs, use of CNTs in preparing electrocatalysts becomes considerable. This paper reviews the literature on the synthesis methods of carbon-supported Pt electrocatalysts for PEMFC catalyst loading reduction through the improvement of catalyst utilization and activity. The features of electroless deposition (ED) method, deposition on sonochemically treated CNTs, polyol process, electrodeposition method, sputter-deposition technique, γ-irradiation method, microemulsion method, aerosol assisted deposition (AAD) method, Pechini method, supercritical deposition technique, hydrothermal method and colloid method are discussed and characteristics of each one are considered.  相似文献   

6.
A proton exchange membrane fuel cell (PEMFC) cogeneration system that provides high-quality electricity and hot water has been developed. A specially designed thermal management system together with a microcontroller embedded with appropriate control algorithm is integrated into a PEM fuel cell system. The thermal management system does not only control the fuel cell operation temperature but also recover the heat dissipated by FC stack. The dynamic behaviors of thermal and electrical characteristics are presented to verify the stability of the fuel cell cogeneration system. In addition, the reliability of the fuel cell cogeneration system is proved by one-day demonstration that deals with the daily power demand in a typical family. Finally, the effects of external loads on the efficiencies of the fuel cell cogeneration system are examined. Results reveal that the maximum system efficiency was as high as 81% when combining heat and power.  相似文献   

7.
Titanium was coated onto an anode gas diffusion layer (GDL) by direct current sputtering to improve the performance and durability of a proton exchange membrane fuel cell (PEMFC). Scanning electron microscopy (SEM) images showed that the GDLs were thoroughly coated with titanium, which showed angular protrusion. Single-cell performance of the PEMFCs with titanium-coated GDLs as anodes was investigated at operating temperatures of 25 °C, 45 °C, and 65 °C. Cell performances of all membrane electrode assemblies (MEAs) with titanium-coated GDLs were superior to that of the MEA without titanium coating. The MEA with titanium-coated GDL, with 10 min sputtering time, demonstrated the best performance at 25 °C, 45 °C, and 65 °C with corresponding power densities 58.26%, 32.10%, and 37.45% higher than that of MEA without titanium coating.  相似文献   

8.
This work experimentally investigates the effects of the pyrolytic graphite sheets (PGS) on the performance and thermal management of a proton exchange membrane fuel cell (PEMFC) stack. These PGS with the features of light weight and high thermal conductivity serve as heat spreaders in the fuel cell stack for the first time to reduce the volume and weight of cooling systems, and homogenizes the temperature in the reaction areas. A PEMFC stack with an active area of 100 cm2 and 10 cells in series is constructed and used in this research. Five PGS of thickness 0.1 mm are cut into the shape of flow channels and bound to the central five cathode gas channel plates. Four thermocouples are embedded on the cathode gas channel plates to estimate the temperature variation in the stack. It is shown that the maximum power of the stack increase more than 15% with PGS attached. PGS improve the stack performance and alleviate the flooding problem at low cathode flow rates significantly. Results of this study demonstrate the feasibility of application of PGS to the thermal management of a small-to-medium-sized fuel cell stack.  相似文献   

9.
In this study, 304 stainless steel (SS) bipolar plates are fabricated by flexible forming process and an amorphous carbon (a-C) film is coated by closed field unbalanced magnetron sputter ion plating (CFUBMSIP). The interfacial contact resistance (ICR), in-plane conductivity and surface energy of the a-C coated 304SS samples are investigated. The initial performance of the single cell with a-C coated bipolar plates is 923.9 mW cm−2 at a cell voltage of 0.6 V, and the peak power density is 1150.6 mW cm−2 at a current density of 2573.2 mA cm−2. Performance comparison experiments between a-C coated and bare 304SS bipolar plates show that the single cell performance is greatly improved by the a-C coating. Lifetime test of the single cell over 200 h and contamination analysis of the tested membrane electrode assemble (MEA) indicate that the a-C coating has excellent chemical stability. A 100 W-class proton exchange membrane fuel cell (PEMFC) short stack with a-C coated bipolar plates is assembled and shows exciting initial performance. The stack also exhibits uniform voltage distribution, good short-term lifetime performance, and high volumetric power density and specific power. Therefore, a-C coated 304SS bipolar plates may be practically applied for commercialization of PEMFC technology.  相似文献   

10.
The segmented fuel cell technology was applied to investigate the effects of the humidification conditions on the internal locally resolved performance and the stability of the fuel cell system. It was found at certain operating conditions, the time-dependent oscillation of current at potentio-static state appeared. The appearance of positive spikes of current indicated a temporary improved performance, while the negative current spikes indicated a temporary decreased performance. The periodic build-up and removal of liquid water in the cell caused unstable cell performance. Through the analyses of the evolution of the locally resolved current density distributions, the reasons for the positive or the negative spikes of current peaks with respect to a stationary value were found, which might be due to the drying-out of the membrane or the flooding of the membrane. The contour of the current density mapping differed to each other at the period of current peaks up or down, which might be due to different effect of the drying-out or flooding on the membrane. Through optimizing the relative humidity of anode (RHa) or cathode (RHc) of the fuel cell, the oscillation of the current disappeared and the performance of the cell became stable. RHc affects the performance of fuel cell much more obviously than RHa. The stability of the fuel cell system is also dependent on the imposed voltage. With the cell voltage decreased, the amplitude and the frequency of positive spikes of current increased.  相似文献   

11.
Durability is an important issue in proton exchange membrane fuel cells (PEMFCs) currently. Fuel starvation could be one of the reasons for PEMFC degradation. In this research, the fuel starvation conditions of a unit cell in a stack are simulated experimentally. Cell voltage, current distribution and localized interfacial potentials are detected in situ to explore their behaviors under different hydrogen stoichiometries. Results show that the localized fuel starvation occurs in different sections at anode under different hydrogen stoichiometries when the given hydrogen is inadequate. This could be attributed to the “vacuum effect” that withdraws fuel from the manifold into anode. Behaviors of current distribution show that the current will redistribute and the position of the lowest current shifts close to the anode inlet with decreasing hydrogen stoichiometry, which indicates that the position of the localized fuel starvation would move towards the inlet of the cell. It is useful to understand the real position of the degradation of MEA.  相似文献   

12.
Polarization losses of the fuel cells with different residual water amount frozen at subzero temperature were investigated by electrochemical impedance spectroscopy (EIS) taking into account the ohmic resistance, charge transfer process, and oxygen mass transport. The potential-dependent impedance before and after eight freeze/thaw cycles suggested that the ohmic resistance did not change, while the change of the charge transfer resistance greatly depended on the residual water amount. Among the four cells, the mass transport resistance of the cell with the largest water amount increased significantly even at the small current density region. According to the thin film-flooded agglomerate model, the interfacial charge transfer process and oxygen mass transport within the agglomerate and through the ionomer thin film in the catalyst layer both contributed to the high frequency impedance arc. From the analysis of the Tafel slopes, the mechanism of the oxygen reduction reaction (ORR) was the same after the cells experienced subzero temperature. The agglomerate diffusion changed a little in all cells and the thin film diffusion effect was obvious for the cell with the largest residual water amount. These results indicated that the slower oxygen diffusion within the catalyst layer (CL) was the main contributor for the evident performance loss after eight freeze/thaw cycles.  相似文献   

13.
Water flooding causes severe degradation of the performance and lifetime of proton exchange membrane fuel cell (PEMFC). In this study, a novel PEMFC stack with in-built moisture coil cooling was designed and the effects of moisture coil cooling on water management in the new PEMFC stack under various operating conditions were investigated. The result showed that the performance of the PEMFC stack was significantly improved due to the moisture condensation under high current density, high operating temperature, high relative humidity and high operating pressure. The output power was increases by 21.62% (525.71 W) at 1600·mA cm−2 while the increased parasitic power was no more than 35W. Moreover, degradation of the cathode catalyst layer after 100 h operation was also reduced by using moisture coil cooling. Compared with the situation without moisture condensation, the maximum decay rate of the cathode catalyst layer thickness after 100 h operation was reduced by 13.01%. Accordingly, the novel design is valuable and can be widely used in the future design of PEMFC.  相似文献   

14.
Dimensional change and humidity-induced stress of the proton exchange membrane were demonstrated to be main reasons for membrane physical failure during the long-term fuel cell operation. In this work, UV laser ablation was proposed to prepare physically stable polyimide supports to reduce the dimensional swelling and humidity-induced stress of the proton exchange membrane under variable humidities. Long-range ordered straight holes with definable open pattern and diameter of 50–200 μm were formed through the polyimide support. Composite proton exchange membrane prepared from the straight-hole polyimide support presented desirable performance and high durability in fuel cells. When Nafion fraction in the composite membrane increased to 48.67%, the proton conductivities of the composite membranes were equal to or greater than that of the conventional Nafion membrane with activation energies lower than that of the Nafion 211 membrane. The dimensions of the composite membranes are very stable in both low and elevated temperature conditions. The proportion of humidity-induced stress to the yield strength for the composite membrane is 0.20%–0.21%, much lower than that of the conventional Nafion membrane (24.77%). As a result, the composite proton exchange membrane prepared from the straight-hole polyimide presented high durability in the fuel cell operation. In the open circuit voltage accelerated test under in situ accelerating RH cyclic test, the irreversible OCV reduction rate of the composite membranes was 2.41–2.72 × 10−5 V/cycle, 37.1%–41.8% lower than that of the conventional Nafion 211 membrane.  相似文献   

15.
As one of the most promising sustainable energy technologies available today, proton exchange membrane fuel cell (PEMFC) engines are becoming more and more popular in various applications, especially in transportation vehicles. However, the complexity and the severity of the vehicle operating conditions present challenges to control the temperature distribution in single cells and stack, which is an important factor influencing the performance and durability of PEMFC engines. It has been found that regulating the input and output coolant water temperature can improve the temperature distribution. Therefore, the control objective in this paper is regulating the input and output temperature of coolant water at the same time. Firstly, a coupled model of the thermal management system is established based on the physical structure of PEMFC engines. Then, in order to realize the simultaneous control of the inlet and outlet cooling water temperature of the PEMFC stack, a decoupling controller is proposed and its closed-loop stability is proved. Finally, based on the actual PEMFC engine platform, the effectiveness, accuracy and reliability of the proposed decoupling controller are tested. The experimental results show that with the proposed decoupling controller, the inlet and outlet temperatures of the PEMFC stack cooling water can be accurately controlled on-line. The temperature error range is less than 0.2 °C even under the dynamic current load conditions.  相似文献   

16.
Effective cooling is critical for safe and efficient operation of proton exchange membrane fuel cell (PEMFC) stacks with high power. The narrow range of operating temperature and the small temperature differences between the stack and the ambient introduce significant challenges in the design of a cooling system. To promote the development of effective cooling strategies, cooling techniques reported in technical research publications and patents are reviewed in this paper. Firstly, the characteristics of the heat generation and cooling requirements in a PEMFC stack are introduced. Then the advantages, challenges and progress of various cooling techniques, including (i) cooling with heat spreaders (using high thermal conductivity materials or heat pipes), (ii) cooling with separate air flow, (iii) cooling with liquid (water or antifreeze coolant), and (iv) cooling with phase change (evaporative cooling and cooling through boiling), are systematically reviewed. Finally, further research needs in this area are identified.  相似文献   

17.
This work characterizes the thermal management of a proton exchange membrane fuel cell (PEMFC) stack with combined passive and active cooling. A 10-cell PEMFC stack with an active area of 100 cm2 for each cell is constructed. Six thermally conductive 0.1-mm-thick Pyrolytic Graphite Sheets (PGSs) are cut into the shape of flow channels and bound to the six central cathode gas channel plates. These PGSs, which are lightweight and have high thermal conductivity, function as heat spreaders and fins and provide passive cooling in the fuel cell stack, along with two small fans for forced convection. Three other cooling configurations with differently sized fans are also tested for comparisons (without PGSs). Although the maximum power generated by the stack with the configuration combining PGSs and fans was 183 W, not the highest among all configurations, it significantly reduced the volume, weight, and cooling power of the thermal management system. Net power, specific power, volumetric power density, and back work ratio of this novel thermal management method are 179 W, 18.54 W kg−1, 38.9 kW m−3, and 2.1%, respectively, which are superior to those of the other three cooling configurations with fans.  相似文献   

18.
In this paper, the proton exchange membrane prepared by covalent-ionically cross-linking water soluble sulfonated-sulfinated poly(oxa-p-phenylene-3,3-phthalido-p-phenylene-oxa-p-phenylene-oxy-phenylene) (SsPEEK-WC) is reported. Compared with covalent cross-linked PEEK-WC membrane, this covalent-ionically cross-linked PEEK-WC membrane exhibits extremely reduced water uptake and methanol permeability, but just slightly sacrificed proton conductivity. The proton conductivity of the covalent-ionically cross-linked PEEK-WC membrane reaches to 2.1 × 10−2 S cm−1 at room temperature and 4.1 × 10−2 S cm−1 at 80 °C. The methanol permeability is 1.3 × 10−7 cm2 s−1, 10 times lower than that of Nafion® 117 membrane. The results suggest that the covalent-ionically cross-linked PEEK-WC membrane is a promising candidate for direct methanol fuel cell because of low methanol permeability and adequate proton conductivity.  相似文献   

19.
As one of the most deleterious impurities to proton exchange membrane fuel cells (PEMFCs), sulfur dioxide (SO2) in air can pass through the membrane from the cathode to the anode and poison the catalyst of the two electrodes. The phenomenon of SO2 crossover is investigated electrochemically in this paper. The influences of SO2 concentration, relative humidity, gas pressure and current density on SO2 crossover are discussed. Experimental results reveal that the anode tends to be poisoned heavily with the increasing concentration of SO2 in the cathode. The coverage of the anode catalyst by SO2 permeating from the cathode enlarges with the decreasing relative humidity in the anode. The rate of SO2 crossover from the anode to the cathode is promoted at high current density when SO2 is directly introduced into the anode side instead of the cathode side, which can be ascribed to the electro-osmotic drag effect. Gas pressures show no obvious effects on SO2 crossover. A co-permeation mechanism of SO2 with water is deduced based on the overall analysis.  相似文献   

20.
In this work, a micro-temperature sensor on a 40 μm flexible stainless-steel substrate was fabricated using micro-electro-mechanical systems (MEMS). Embedding a micro-temperature sensor in a proton exchange membrane fuel cell (PEMFC) to monitor temperature will not damage the sensor during the experimental process. This investigation is the first to develop a micro-temperature sensor that can be placed anywhere between the membrane electrode assembly (MEA) and the flow-channel plate inside a PEMFC. The simulated temperature is consistent with the experimentally determined temperature. The performance curve is also consistent with experimental results, revealing the accuracy of the simulation and the effectiveness of monitoring temperature inside a PEMFC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号