首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Li dispersed graphene with Stone–Wales (SW) defects was investigated for geometric stability and hydrogen storage capability using density functional theory (DFT) calculations. When the graphene with SW defects, which has the internal strain derived from rotated C–C bond, adsorbs Li adatoms, the strain is relieved by generating the buckling of graphene. This effect plays a crucial role in enhancing the binding energy (Eb) of Li adatoms, consequently allowing the atomic dispersion of Li adatoms on the graphene without clustering. The Li dispersed graphene with SW defects can accommodate four H2 molecules with the range of 0.20–0.35 eV. This falls in a desirable range for feasible applications under ambient conditions. It is therefore anticipated that Li dispersed graphene with SW defects may be an ideal hydrogen storage media due to its geometric stability and high hydrogen storage capacity.  相似文献   

2.
Hydrogen storage properties of Li-decorated graphene oxides containing epoxy and hydroxyl groups are studied by using density functional theory. The Li atoms form Li4O/Li3OH clusters and are anchored strongly on the graphene surface with binding energies of −3.20 and −2.84 eV. The clusters transfer electrons to the graphene substrate, and the Li atoms exist as Li+ cations with strong adsorption ability for H2 molecules. Each Li atom can adsorb at least 2H2 molecules with adsorption energies greater than −0.20 eV/H2. The hydrogen storage properties of Li-decorated graphene at different oxidation degrees are studied. The computations show that the adsorption energy of H2 is −0.22 eV/H2 and the hydrogen storage capacity is 6.04 wt% at the oxidation ratio O/C = 1/16. When the O/C ratio is 1:8, the storage capacity reaches 10.26 wt% and the adsorption energy is −0.15 eV/H2. These results suggest that reversible hydrogen storage with high recycling capacities at ambient temperature can be realized through light-metal decoration on reduced graphene oxides.  相似文献   

3.
This paper investigates the decoration of superalkali NLi4 on graphene and the hydrogen storage properties by using first principles calculations. The results show that the NLi4 units can be stably anchored on graphene while the Li atoms are strongly bound together in the superalkali clusters. Decoration using the superalkali clusters not only solve the aggregation of metal atoms, it also provide more adsorption sites for hydrogen. Each NLi4 unit can adsorb up to 10 H2 molecules, and the NLi4 decorated graphene can reach a hydrogen storage capacity 10.75 wt% with an average adsorption energy ?0.21 eV/H2. We also compute the zero-point energies and the entropy change upon adsorption based on the harmonic frequencies. After considering the entropy effect, the adsorption strengths fall in the ideal window for reversible hydrogen storage at ambient temperatures. So NLi4 decorated graphene can be promising hydrogen storage material with high reversible storage capacities.  相似文献   

4.
Two-dimensional (2D) carbon-based (C-based) and carbon-nitrogen (C–N) materials have great potential in the energy harvest and storage fields. We investigate a novel carbon biphenylene (C468) consisting of four-, six- and eight-membered rings of sp2 carbon atoms (Fan et al., Science, 372:852-6 (2021)) for hydrogen storage. Using first-principles based Density functional theory calculations, we study the geometrical and electronic properties of C468 and N-doped C468. Lithium (Li) atoms were symmetrically adsorbed on both sides of the substrate, and their adsorption positions were determined. The maximum gravimetric density of hydrogen (H2) adsorbed symmetrically on both sides of Li atom was studied within the scope of physical adsorption process (−0.2 eV/H2 ∼ −0.6 eV/H2). Li-decorated C468 can adsorb 8 upper hydrogen molecules and 8 lower hydrogen molecules, and Li-decorated N-doped C468 can adsorb 9 upper hydrogen molecules and 9 lower hydrogen molecules. The gravimetric densities of Li-decorated C468 and Li-decorated N-doped C468 can reach 9.581 wt% and 10.588 wt%, respectively. Our findings suggest significant insights for using Li-decorated C468 and Li-decorated N-doped C468 as hydrogen storage candidates and effectively expand the application scope of C-based materials and C–N materials.  相似文献   

5.
In this study, using the first principles calculation and analysis, we found that the B-doping in double-vacancy defective graphene could effectively increase the binding energy of Ti atoms in each adsorption site, especially in the H2 adsorption site with a maximum binding energy of 8.3 eV. However, N-doped bilayer graphene (N-BLG) reduced the binding energy of Ti atoms by 88% of the adsorption sites. Given these two findings, a B- and N-doped bilayer double-vacancy-defective graphene (Ti-BDVG(Ti)-Ti) was constructed. Our findings also showed that the Ti-BDVG(Ti)-Ti outer surface and inner surface could adsorb 32 and 12H2 molecules, respectively, of which 22, 20 and 2H2 molecules are adsorbed by Kubas, electrostatic interactions and chemisorption, respectively. The hydrogen storage mechanism of Ti-BDVG(Ti)-Ti involves multiple adsorption modes, and this hydrogen storage mechanism provides a theoretical basis for the rational design of hydrogen storage materials with maximum effective hydrogen storage capacity.  相似文献   

6.
Developing hydrogen economy is one of the feasible routes to reduce carbon emission in response to the energy crisis and global warming. The hydrogen generation by electrochemical water splitting has received widespread attention, but it is still challenging to fabricate high-efficient electrocatalysts to decrease the kinetic energy barrier of hydrogen evolution reaction (HER). Loading transition metal (TM) nanoparticles (NPs) into heteroatom-doped carbon materials (HCM) has been reported as a capable scheme to increase the electrochemical activity and stability, but the synergic effect between TM surface and HCM is still worth exploring. Ascertaining that, we used metal-organic frameworks (MOFs) as the sacrificial precursor to synthesis a series of Co NPs encapsulated in N-doped microporous carbon (NMPC) nanocatalysts (denoted as Co@NMPC) with different N species (such as pyrrolic, pyridinic and graphitic N). The nanocatalyst prepared at an appropriate condition displayed an outstanding HER activity with an overpotential of 193 mV in 1 M KOH solution and 132 mV in 0.5 M H2SO4 solution to reach 10 mA cm?2 current density. Furthermore, the results of in situ shielding tests indicate that the synergy of pyridinic N–Co site owing to the intimate contact between Co surface and NMPC play the pivotal role in boosting HER performance. Density functional theory (DFT) calculations were employed to obtain an in-depth mechanism of synergic effect between Co and NMPC.  相似文献   

7.
Based on a polyphenylene network, a series of porous graphene nanotubes (PGNTs) are created and optimised via density functional theory calculations. The calculated band dispersion of the two-dimensional porous graphene can be tuned by rolling it into nanotube form. To explore the energy application of PGNTs, we studied H2 adsorptions on metal (Li, Ca, and Na) decorated structures of PGNTs as well as B-substituted PGNTs. The results indicate that both the curvature effect and B substitution can strengthen the metal binding and prevent the metal atoms from clustering. Particularly for H2 adsorption, modification of the electronic property by the curvature effect is beneficial to provide more accessible space, leading to much higher adsorption energies of H2 on PGNTs than that on planar porous graphene, which is promising for the practical application of hydrogen storage.  相似文献   

8.
Multiple Ti and Li atom doped carbon nanorings are considered for hydrogen storage using density functional theory for the first time. There are five six membered carbon rings bonded through C–C bond in a carbon nanoring. Formation energy values show that both, Li as well as Ti atom doped carbon nanoring, are thermodynamically stable structures. Cohesive energy values indicate that Li and Ti atom doped carbon nanoring structures are more stable than undoped carbon nanoring. No clustering of metal atoms occurs in metal doped carbon nanorings which usually reduces the hydrogen storage capacity of a material. Li atom doped carbon nanoring is not suitable for hydrogen storage even at very low temperature at 1 atm pressure as well as at high pressure at room temperature. Ti atom doped carbon nanoring is suitable for hydrogen storage below 225 K and 1 atm pressure as well as at high pressure at room temperature. H2 desorption temperature is found to be 113 and 450 K for Li and Ti atom doped carbon nanoring respectively. H2 molecules interact strongly with Ti atom doped carbon nanoring than Li atom doped carbon nanoring that results in higher H2 desorption temperature for the former than the latter.  相似文献   

9.
Lithium decoration is an effective strategy for improving the hydrogen adsorption binding energy and the storage capacity in carbon nanostructures. Here, it is shown that Li-decorated double carbon vacancy graphene (DVG) can be used as an efficient hydrogen storage medium by means of Density Functional Theory (DFT) based calculations. The Li binding energy in DVG is 4.04 eV, which is much higher than that of pristine graphene. A maximum of four hydrogen molecules adsorb on Li decorated on one side of DVG and this leads to a gravimetric storage capacity of 3.89 wt% with an average adsorption binding energy of 0.23 eV/H2. When Li is decorated on both sides of DVG, the gravimetric storage capacity reaches 7.26 wt% with a binding energy of 0.26 eV/H2 which shows that desorption would take place at ambient conditions.  相似文献   

10.
The emerging 2D g-C2N obtained increasingly more popularity in functional materials design, and its natural porosity can easily accommodate metal atoms, making itself more suitable for energy gases storage. In this study, we employed DFT computational studies to systematically solve the electronic structure of Li-doped g-C2N monolayer, and evaluate its performance in hydrogen storage. In our calculations, we found that each pore of g-C2N can adsorb at most three Li atoms that bind with pyridinic N atoms. We also noticed that considerable amount of charges were transferred from the adsorbed Li to the pristine materials, potentially enhancing its overall conductivity. The change of electronic structure also leads to its improved performance in H2 adsorption, due to the fact that the electrostatic interactions between the adsorbed H2 and Li can be largely enhanced. The optimised configurations of the Li-doped g-C2N with multiple adsorbed H2 molecules were presented, and the fundamental mechanisms of adsorption were also investigated in details. The highest storage capacity of hydrogen by Li-doped g-C2N can reach to 7.8 wt%, much higher than the target value of 5.5 wt %, defined by the U.S department of energy (DOE). Moreover, except Li, we also found that the nitrogen atoms or the N-C bonds can also serve as active adsorption sites. The computational explorations conducted in this study actually indicates a promising prospect of alkali metals decorated 2D materials in the area of hydrogen storage; and we believe the performance of these kinds of novel materials can be further enhanced via more decent modifications.  相似文献   

11.
By using first-principles density functional theory, a theoretical investigation of Li-doped fluorinated graphene and its application as a hydrogen storage media is performed. It is found that a mixture between sp3 and a higher degree of sp2 of the carbon orbitals after doping with Li would restore the distorted fluorinated graphene, and a fluorinated graphene layer with Li adsorbed on single or double-sides could store hydrogen up to 9 or 16.2 wt%. Regarding the H2 adsorption mechanism, it has been demonstrated that the enhanced electrostatic field around the Li atom originates from the increased charge transfer from Li to graphene and F atoms with more electronegativity. Hybridization interaction between Li and graphene is also responsible for the adsorption of H2 molecules.  相似文献   

12.
Hybrid catalysts composed of transition metals and nitrogen-doped carbons have been emerging as one of efficient electrocatalysts for electrochemical CO2-to-CO under ambient conditions. Herein, NiO loaded on mesoporous graphene with tunable concentration of pyridinic nitrogen is rationally synthesized by using low-intensity pulsed laser irradiation and pyrolysis treatments. Comprehensive experiments verify that, it is pyridinic N, rather than pyrrolic N, when bonded to Ni, that significantly enhance the electrochemical CO2 reduction reaction performance. The optimized catalyst exhibits a high CO Faradaic efficiency of 87.5% at a low potential of ?0.74 V vs. reversible hydrogen electrode, associated with negligible attenuation of continuous operation over 12 h.  相似文献   

13.
In this study, we studied defect-engineering and lithium decoration of 2D phosphorene for effective hydrogen storage using density functional theory. Contrary to graphene, it is found that the presence of point-defects is not preferable for anchoring of H2 molecules over defective phosphorene. According to previous research, strategies such as defect engineering, metal decoration, and doping enhance the hydrogen storage capacity of several 2D materials. Our DFT simulations show that point defects in phosphorene do not improve the hydrogen storage capacity compared to pristine phosphorene. However, selective lithium decoration over the defective site significantly improves the hydrogen adsorption capacity yielding a binding energy of as high as ?0.48 eV/H2 in Li-decorated single vacancy phosphorene. Differential charge densities and projected density of states have been computed to understand the interactions and charge transfer among the constituent atoms. Strong polarization of the H2 molecule is evidenced by the charge accumulation and depletion. The PDOS shows that the presence of Li leads to enhanced charge transfer. The maximum gravimetric density was investigated by sequentially adding H2 molecules to the Li-decorated single vacancy defective phosphorene. The Li-decorated single vacancy phosphorene is found to possess a gravimetric density of around 5.3% for hydrogen storage.  相似文献   

14.
The adsorption of hydrogen molecules on monolayer graphene is investigated using molecular dynamics simulations (MDS). Interatomic interactions of the graphene layer are described using the well-known AIREBO potential, while the interactions between graphene and hydrogen molecule are described using Lennard-Jones potential. In particular, the effect of strain and different point defects on the hydrogen storage capability of graphene is studied. The strained graphene layer is found to be more active for hydrogen and show 6.28 wt% of H2 storage at 0.1 strain at 77 K temperature and 10 bar pressure. We also studied the effect of temperature and pressure on the adsorption energy and gravimetric density of H2 on graphene. We considered different point defects in the graphene layer like monovacancy (MV), Stone Wales (SW), 5-8-5 double vacancy (DV), 555–777 DV, and 5555-6-7777 DV which usually occur during the synthesis of graphene. At 100 bar pressure, graphene with 1% concentration of MV defects leads to 9.3 wt% and 2.208 wt% of H2 storage at 77 K and 300 K, respectively, which is about 42% higher than the adsorption capacity of pristine graphene. Impact of defects on the critical stress and strain of defected graphene layers is also studied.  相似文献   

15.
As a potential hydrogenation catalyst, palladium nanoparticles supported by graphene encounter three major problems: transition metal agglomeration, interstitial H atom, and the competition between desorption of H2 and Pdn-Hx complex from graphene sheet. In this paper, defects and interstitial B are used to promote the stability and H2 dissociation of Pd6 supported by graphene. The introduction of defects increases the binding energy of Pd, Pd6 and Pd6B to graphene by a factor of 5–7 and 7–9 before and after hydrogen adsorption, respectively. It indicates that defects can effectively avoid the desorption competition between PdnHx and hydrogen molecules. Moreover, the energy barrier of dissociation for the first hydrogen molecule on Pd6B/C49 is 0.49 eV, which is lower than 0.75 eV on Pd6/C49 and 0.69 eV on Ti6/C49.  相似文献   

16.
New hydrogen adsorption states on Li, Na, and Mg-decorated graphene-type BC3 sheet have been investigated by first-principles calculations. The structural, electronic and binding properties, metal binding and nH2 (n = 1–10) adsorption states of these systems are studied in detail with the Mulliken analysis, charge density differences, and partial density of states. To enhance the number of the adsorbed H2 molecules per metal atom, and also to generate the better initial coordinates for reducing the simulation time, we present two masthematical algorithms (CLICH and RICH). The tested results on BC3 sheet and boron-doped graphene (C30B2) show that these algorithms can increase the number of adsorbed hydrogen molecules by minimizing the computational time. It is seen that nH2 (n = 1–10) adsorbed Li,/Na and/Mg-decorated BC3 single- and double-sided systems are industrial materials for hydrogen storage technology, their adsorption energies fall into the acceptable adsorption energy range (0.20–0.60 eV/H2). It is concluded from the optimized geometries and charge density differences for the higher number of H2 adsorbed systems that not only decorated metal atom but also the sheet plays an important role in hydrogen storage process, because the boron atoms in the sheet expand the induced electric field between the adatoms and BC3 sheet. From Mulliken analysis, there is a charge transfer mechanism between H2 molecules and metal atoms. Moreover, the resonant peaks for the sheet, metal atoms and H2 molecules in partial density of states curves indicate the possible hybridizations. Additionally, these adsorption processes are supported by charge density difference plots.  相似文献   

17.
In virtue of the first-principle calculations, the hydrogen storage behavior in several metal decorated graphyne was investigated. It is found that the hydrogen storage capacity can be as large as 18.6, 10.5, 9.9 and 9.5 wt% with average adsorption energy of about −0.27, −0.36, −0.76 and −0.70 eV/H2 for Li, Ca, Sc, Ti decorated graphyne, respectively. The results suggest potential candidates for hydrogen storage at ambient condition. The adsorption mechanism for H2 on metal coated graphyne was mainly attributed to the polarization induced by electrostatic field of metal atoms on graphyne and the hybridization between the metal atoms and hydrogen molecules. Furthermore, the formation of super-molecules of hydrogen can enhance the adsorption energy.  相似文献   

18.
Based on first-principles calculations, the H2 adsorptions onto six types of modified graphene substrates decorated with light metals (Li, Na, K, Be, Mg, Ca) are investigated to shed light on the factors affecting the H2 binding energies. It is demonstrated that the introduction of defects and dopants into graphene substrates is essential to prevent the metal clustering and achieve dispersed metal atoms desirable for H2 adsorption. The interaction between H2 and alkali/alkali-earth metal decorated graphene systems is attributed to the electrostatic effect induced by polarized dipole–-dipole interaction. Via introducing defects and hetero-atoms to modify the electronegativity of the local structure, the H2 adsorption energy can be tuned by choosing the combination of suitable metals and substrates. The calculated H2 binding strength is positively correlated to the charge transfer from the metal to the substrates and the dipole momentum of metal decorated substrates. Compared the cases with different metals decoration, Mg and Ca are expected to the most promising candidates for multiple H2 adsorptions.  相似文献   

19.
Motivated by novel graphyne-like carbon nanostructure C68-GY, spin-polarized DFT calculations with dispersion-correction were performed to investigate the hydrogen adsorption capacity of Li decorated C68-GY nanosheet. The binding energy between Li and C68-GY was larger than the cohesive energy of bulk metal, indicating Li atoms would prefer to separately attached on C68-GY. The ab initio molecular dynamics simulation has been performed to confirm the stability of Li/C complex. When five Li atoms decorated on C68-GY, 14H2 molecules were captured. The maximum hydrogen storage density was 8.04 wt% with an average hydrogen adsorption energy of −0.227 eV per H2. The positively charged Li atoms aroused electrostatic field and induced the polarization of H2. It was notable to observe strong hybridization between the main peak of H-1s orbitals with Li below Fermi level, which was responsible for the enhancement of hydrogen binding energy, indicating its potential application on hydrogen storage.  相似文献   

20.
To find ideal hydrogen storage media, hydrogen storage performance of Li decorated net-τ has been investigated by first-principles calculations. Maximum 6 Li atoms are adsorbed on net-τ, with the average binding energy of 2.15 eV for per Li atom. Based on 6Li-decorated net-τ, up to twenty H2 molecules are adsorbed, with a high H2 storage capacity of 12.52 wt% and an appropriate adsorption energy of 0.21 eV/H2. Finally, H2 uptake performance is measured by GCMC simulations. Our results suggest that Li-decorated net-τ may be a promising hydrogen storage medium under realistic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号