首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To improve hydrogen desorption properties of MgH2, mechanical milling of MgH2 with low concentration (2 and 5%) of NaNH2 has been performed. Pre-milling of MgH2 for 10 h has been done and then six samples have been synthesised with different milling times from 15 to 60 min. Microstructural characterisation has been performed using X-ray diffraction (XRD), scanning electron microscopy (SEM) and laser scattering measurements (PSD), and correlated to desorption properties examined using Differential Scanning Calorimetry (DSC) and Hydrogen Sorption Analyser (HSA). Thermal analysis shows that desorption temperatures are shifted towards lower values. It also highlights the significance of milling time and additive concentration on desorption behaviour.  相似文献   

2.
The effects of TiO2 nanopowder addition on the dehydrogenation behaviour of LiAlH4 have been studied. The 5 wt.% TiO2-added LiAlH4 sample showed a significant improvement in dehydrogenation rate compared to that of undoped LiAlH4, with the dehydrogenation temperature reduced from 150 °C to 60 °C. Kinetic desorption results show that the added LiAlH4 released about 5.2 wt% hydrogen within 30 min at 100 °C, while the as-received LiAlH4 just released below 0.2 wt.% hydrogen within same time at 120 °C. From the Arrhenius plot of the hydrogen desorption kinetics, the apparent activation energy is 114 kJ/mol for pure LiAlH4 and 49 kJ/mol for the 5 wt.% TiO2 added LiAlH4, indicating that TiO2 nanopowder adding significantly decreased the activation energy for hydrogen desorption of LiAlH4. X-ray diffraction and Fourier transform infrared analysis show that there is no phase change in the cell volume or on the Al-H bonds of the LiAlH4 due to admixture of TiO2 after milling. X-ray photoelectron spectroscopy results show no changes in the Ti 2p spectra for TiO2 after milling and after dehydrogenation. The improved dehydrogenation behaviour of LiAlH4 in the presence of TiO2 is believed to be due to the high defect density introduced at the surfaces of the TiO2 particles during the milling process.  相似文献   

3.
The mutual destabilization of LiAlH4 and MgH2 in the reactive hydride composite LiAlH4-MgH2 is attributed to the formation of intermediate compounds, including Li-Mg and Mg-Al alloys, upon dehydrogenation. TiF3 was doped into the composite for promoting this interaction and thus enhancing the hydrogen sorption properties. Experimental analysis on the LiAlH4-MgH2-TiF3 composite was performed via temperature-programmed desorption (TPD), differential scanning calorimetry (DSC), isothermal sorption, pressure-composition isotherms (PCI), and powder X-ray diffraction (XRD). For LiAlH4-MgH2-TiF3 composite (mole ratio 1:1:0.05), the dehydrogenation temperature range starts from about 60 °C, which is 100 °C lower than for LiAlH4-MgH2. At 300 °C, the LiAlH4-MgH2-TiF3 composite can desorb 2.48 wt% hydrogen in 10 min during its second stage dehydrogenation, corresponding to the decomposition of MgH2. In contrast, 20 min was required for the LiAlH4-MgH2 sample to release so much hydrogen capacity under the same conditions. The hydrogen absorption properties of the LiAlH4-MgH2-TiF3 composite were also improved significantly as compared to the LiAlH4-MgH2 composite. A hydrogen absorption capacity of 2.68 wt% under 300 °C and 20 atm H2 pressure was reached after 5 min in the LiAlH4-MgH2-TiF3 composite, which is larger than that of LiAlH4-MgH2 (1.75 wt%). XRD results show that the MgH2 and LiH were reformed after rehydrogenation.  相似文献   

4.
We investigated the effects of NbF5 addition by ball milling on the hydrogen storage properties of LiAlH4. Pressure-composition-temperature (PCT) experiments showed that addition of 0.5 and 1 mol% NbF5 in LiAlH4 improves the onset desorption temperature and results in little decrease in hydrogen capacity, with approximately 7.0 wt% released by 188 °C. Isothermal dehydriding kinetics measurements indicated that the NbF5-doped sample shows an average dehydrogenation rate 5–6 times faster than that of the as-received LiAlH4 sample. In the x-ray diffraction results, there are distinct peaks of Al and LiH that appear after desorption. There is no peak of NbF5 before or after desorption. Desorption kinetics measurements indicated that the activation energy, EA, for LiAlH4 + 1 mol% NbF5 is about 67 kJ/mol for first reaction stage and about 77 kJ/mol for second reaction stage. The desorption process was further characterised by differential scanning calorimetry, and the possible mechanism of the effects of NbF5 addition is discussed.  相似文献   

5.
In this work, we report the synthesis, characterization and destabilization of lithium aluminum hydride by ad-mixing nanocrystalline magnesium hydride (e.g. LiAlH4 + nanoMgH2). A new nanoparticulate complex hydride mixture (Li–nMg–Al–H) was obtained by solid-state mechano-chemical milling of the parent compounds at ambient temperature. Nanosized MgH2 is shown to have greater and improved hydrogen performance in terms of storage capacity, kinetics, and initial temperature of decomposition, over the commercial MgH2. The pressure–composition isotherms (PCI) reveal that the destabilized LiAlH4 + nanoMgH2 possess ∼5.0 wt.% H2 reversible capacity at T ≤ 350 °C. Van't Hoff calculations demonstrate that the destabilized (LiAlH4 + nanoMgH2) complex materials have comparable enthalpy of hydrogen release (∼85 kJ/mole H2) to their pristine counterparts, LiAlH4 and MgH2. However, these new destabilized complex hydrides exhibit reversible hydrogen sorption behavior with fast kinetics.  相似文献   

6.
A systematic investigation was performed on the hydrogen storage behaviors of ball-milled MgH2-activated carbon (AC) composites. Differential Scanning Calorimetry (DSC) measurement on the desorption temperature was carried out and indicated that the onset and peak temperatures both decreased with increasing AC adding amount, for example, the desorption peak temperature shifted from 349 °C for 1 wt% AC to 316 °C for 20 wt% AC. Furthermore, it is noted that the hydrogen absorption capacity and hydriding kinetics of the composites were also dependent on the adding amount of AC, and the optimum condition could be achieved by mechanical milling of MgH2 with 5 wt% AC. The Mg-5wt%AC composite can absorb about 6.5 wt% hydrogen within 7 min at 300 °C and 6.7 wt% within 2 h at 200 °C, respectively. It is also demonstrated that MgH2-5wt% AC exhibited good hydrogen desorption property that could release 6.5 wt% at 330 °C within 30 min. X-ray diffraction patterns (XRD) and transmission electron microscopy (TEM) observations revealed that the grain size of the synthesized composites decreased with increasing AC amount. This may contribute to the improvement of hydrogen storage in MgH2-AC composites.  相似文献   

7.
Lithium aluminum hydride (LiAlH4) is considered as an attractive candidate for hydrogen storage owing to its favorable thermodynamics and high hydrogen storage capacity. However, its reaction kinetics and thermodynamics have to be improved for the practical application. In our present work, we have systematically investigated the effect of NiCo2O4 (NCO) additive on the dehydrogenation properties and microstructure refinement in LiAlH4. The dehydrogenation kinetics of LiAlH4 can be significantly increased with the increase of NiCo2O4 content and dehydrogenation temperature. The 2 mol% NiCo2O4-doped LiAlH4 (2% NCO–LiAlH4) exhibits the superior dehydrogenation performances, which releases 4.95 wt% H2 at 130 °C and 6.47 wt% H2 at 150 °C within 150 min. In contrast, the undoped LiAlH4 sample just releases <1 wt% H2 after 150 min. About 3.7 wt.% of hydrogen can be released from 2% NCO–LiAlH4 at 90 °C, where total 7.10 wt% of hydrogen is released at 150 °C. Moreover, 2% NCO–LiAlH4 displayed remarkably reduced activation energy for the dehydrogenation of LiAlH4.  相似文献   

8.
The effects of K2TiF6 on the dehydrogenation properties of LiAlH4 were investigated by solid-state ball milling. The onset decomposition temperature of 0.8 mol% K2TiF6 doped LiAlH4 is as low as 65 °C that 85 °C lower than that of pristine LiAlH4. Isothermal dehydrogenation properties of the doped LiAlH4 were studied by PCT (pressure–composition–temperature). The results show that, for the 0.8 mol% K2TiF6 doped LiAlH4 that dehydrogenated at 90 °C, 4.4 wt% and 6.0 wt% of hydrogen can be released in 60 min and 300 min, respectively. When temperature was increased to 120 °C, the doped LiAlH4 can finish its first two dehydrogenation steps in 170 min. DSC results show that the apparent activation energy (Ea) for the first two dehydrogenation steps of LiAlH4 are both reduced, and XRD results suggest that TiH2, Al3Ti, LiF and KH are in situ formed, which are responsible for the improved dehydrogenation properties of LiAlH4.  相似文献   

9.
Both kinetics and thermodynamics properties of MgH2 are significantly improved by the addition of Mg(AlH4)2. The as-prepared MgH2–Mg(AlH4)2 composite displays superior hydrogen desorption performances, which starts to desorb hydrogen at 90 °C, and a total amount of 7.76 wt% hydrogen is released during its decomposition. The enthalpy of MgH2-relevant desorption is 32.3 kJ mol−1 H2 in the MgH2–Mg(AlH4)2 composite, obviously decreased than that of pure MgH2. The dehydriding mechanism of MgH2–Mg(AlH4)2 composite is systematically investigated by using x-ray diffraction and differential scanning calorimetry. Firstly, Mg(AlH4)2 decomposes and produces active Al. Subsequently, the in-situ formed Al reacts with MgH2 and forms Mg–Al alloys. For its reversibility, the products are fully re-hydrogenated into MgH2 and Al, under 3 MPa H2 pressure at 300 °C for 5 h.  相似文献   

10.
In this work, differently from our previous work, MgH2 instead of Mg was used as a starting material. Ni, Ti, and LiBH4 with a high hydrogen-storage capacity of 18.4 wt% were added. A sample with a composition of MgH2–10Ni–2LiBH4–2Ti was prepared by reactive mechanical grinding. MgH2–10Ni–2LiBH4–2Ti after reactive mechanical grinding contained MgH2, Mg, Ni, TiH1.924, and MgO phases. The activation of MgH2–10Ni–2LiBH4–2Ti for hydriding and dehydriding reactions was not required. At the number of cycles, n = 2, MgH2–10Ni–2LiBH4–2Ti absorbed 4.09 wt% H for 5 min, 4.25 wt% H for 10 min, and 4.44 wt% H for 60 min at 573 K under 12 bar H2. At n = 1, MgH2–10Ni–2LiBH4–2Ti desorbed 0.13 wt% H for 10 min, 0.54 wt% H for 20 min, 1.07 wt% H for 30 min, and 1.97 wt% H for 60 min at 573 K under 1.0 bar H2. The PCT (Pressure–Composition–Temperature) curve at 593 K for MgH2–10Ni–2LiBH4–2Ti showed that its hydrogen-storage capacity was 5.10 wt%. The inverse dependence of the hydriding rate on temperature is partly due to a decrease in the pressure differential between the applied hydrogen pressure and the equilibrium plateau pressure with the increase in temperature. The rate-controlling step for the dehydriding reaction of the MgH2–10Ni–2LiBH4–2Ti at n = 1 was analyzed.  相似文献   

11.
2LiBH4/MgH2 system is a representative and promising reactive hydride composite for hydrogen storage. However, the high desorption temperature and sluggish desorption kinetics hamper its practical application. In our present report, we successfully introduce CoNiB nanoparticles as catalysts to improve the dehydrogenation performances of the 2LiBH4/MgH2 composite. The sample with CoNiB additives shows a significant desorption property. Temperature programmed desorption (TPD) measurement demonstrates that the peak decomposition temperatures of MgH2 and LiBH4 are lowered to be 315 °C and 417 °C for the CoNiB-doped 2LiBH4/MgH2. Isothermal dehydrogenation analysis demonstrates that approximately 10.2 wt% hydrogen can be released within 360 min at 400 °C. In addition, this study gives a preliminary evidence for understanding the CoNiB catalytic mechanism of 2LiBH4/MgH2  相似文献   

12.
The effect of lithium borohydride (LiBH4) on the hydriding/dehydriding kinetics and thermodynamics of magnesium hydride (MgH2) was investigated. It was found that LiBH4 played both positive and negative effects on the hydrogen sorption of MgH2. With 10 mol.% LiBH4 content, MgH2–10 mol.% LiBH4 had superior hydrogen absorption/desorption properties, which could absorb 6.8 wt.% H within 1300 s at 200 °C under 3 MPa H2 and completed desorption within 740 s at 350 °C. However, with the increasing amount of LiBH4, the hydrogenation/dehydrogenation kinetics deteriorated, and the starting desorption temperature increased and the hysteresis of the pressure-composition isotherm (PCI) became larger. Our results showed that the positive effect of LiBH4 was mainly attributed to the more uniform powder mixture with smaller particle size, while the negative effect of LiBH4 might be caused by the H–H exchange between LiBH4 and MgH2.  相似文献   

13.
A LiAlH4/single walled carbon nanotube (SWCNT) composite system was prepared by mechanical milling and its hydrogen storage properties investigated. The SWCNT - metallic particle addition resulted in both a decreased decomposition temperature and enhanced desorption kinetics compared to pure LiAlH4. The decomposition temperature of the 5 wt.% SWCNT-added LiAlH4 sample was reduced to 80 °C and 130 °C for the first and second stage, respectively, compared with 150 °C and 180 °C for as-received LiAlH4. In terms of the desorption kinetics, the 5 wt.% SWCNT-added LiAlH4 sample released about 4.0 wt.% hydrogen at 90 °C after 40 min dehydrogenation, while the as-milled LiAlH4 sample released less than 0.3 wt.% hydrogen for the same temperature and time. Differential scanning calorimetry measurements indicate that enthalpies of decomposition in LiAlH4 decrease with added SWCNTs. The apparent activation energy for hydrogen desorption was decreased from 116 kJ/mol for as-received LiAlH4 to 61 kJ/mol by the addition of 5 wt.% SWCNTs. It is believed that the significant improvement in dehydrogenation behaviour of SWCNT-added LiAlH4 is due to the combined influence of the SWCNT structure itself and the catalytic role of the metallic particles contained in the SWCNTs. In addition, the different effects of the SWCNTs and the metallic catalysts contained in the SWCNTs were also investigated, and the possible mechanism is discussed.  相似文献   

14.
In the present work, the catalytic effect of TiF3 on the dehydrogenation properties of LiAlH4 has been investigated. Decomposition of LiAlH4 occurs during ball milling in the presence of 4 mol% TiF3. Different ball milling times have been used, from 0.5 h to 18 h. With ball milling time increasing, the crystallite sizes of LiAlH4 get smaller (from 69 nm to 43 nm) and the dehydrogenation temperature becomes lower (from 80 °C to 60 °C). Half an hour ball milling makes the initial dehydrogenation temperature of doped LiAlH4 reduce to 80 °C, which is 70 °C lower than as-received LiAlH4. About 5.0 wt.% H2 can be released from TiF3-doped LiAlH4 after 18 h ball milling in the range of 60 °C–145 °C (heating rate 2 °C min−1). TiF3 probably reacts with LiAlH4 to form the catalyst, TiAl3. The mechanochemical and thermochemical reactions have been clarified. However, the rehydrogenation of LiAlH4/Li3AlH6 can not be realized under 95 bar H2 in the presence of TiF3 because of their thermodynamic properties.  相似文献   

15.
In this study, various nanoscale metal oxide catalysts, such as CeO2, TiO2, Fe2O3, Co3O4, and SiO2, were added to the LiBH4/2LiNH2/MgH2 system by using high-energy ball milling. Temperature programmed desorption and MS results showed that the Li–Mg–B–N–H/oxide mixtures were able to dehydrogenate at much lower temperatures. The order of the catalytic effect of the studied oxides was Fe2O3 > Co3O4 > CeO2 > TiO2 > SiO2. The onset dehydrogenation temperature was below 70 °C for the samples doped with Fe2O3 and Co3O4 with 10 wt.%. More than 5.4 wt.% hydrogen was released at 140 °C. X-ray diffraction indicated that the addition of metal oxides inhibited the formation of Mg(NH2)2 during ball milling processes. It is thought that the changing of the ball milling products results from the interaction of oxide ions in metal oxide catalysts with hydrogen atoms in MgH2. The catalytic effect depends on the activation capability of oxygen species in metal oxides on hydrogen atoms in hydrides.  相似文献   

16.
17.
The various Mg–B–Al–H systems composed of Mg(BH4)2 and different Al-sources (metallic Al, LiAlH4 and its decomposition products) have been investigated as potential hydrogen storage materials. The role of Al was studied on the dehydrogenation and the rehydrogenation of the systems. The results indicate that the different Al-sources exhibit a similar improving effect on the dehydrogenation properties of Mg(BH4)2. Taking the Mg(BH4)2 + LiAlH4 system as an example, at first LiAlH4 rapidly decomposes into LiH and Al, then Mg(BH4)2 decomposes into MgH2 and B, finally the MgH2 reacts with Al, LiH and B, which forms Mg3Al2 and MgAlB4. The system starts to desorb H2 at 140 °C and desorbs 3.6 wt.% H2 below 300 °C, while individual Mg(BH4)2 starts to desorb H2 at 250 °C and desorbs only 1.3 wt.% H2 below 300 °C. The isothermal desorption kinetics of the Mg–B–Al–H systems is about 40% faster than that of Mg(BH4)2 at the hydrogen desorption ratio of 90%. In addition, the Mg–B–Al–H systems show partial reversibility at moderate temperature and pressure. For Al-added system, the product of rehydrogenation is MgH2, while for LiAlH4-added system the product is composed of LiBH4 and MgH2.  相似文献   

18.
A ternary Mg2NiH4 hydride was synthesized using method that relies on a relatively short mechanical milling time (one hour) of a 2:1 MgH2–Ni powder mixture followed by sintering at a sufficiently high hydrogen pressure (>85 bar) and temperature (>400 °C). The ternary hydride forms in less than 2.5 h (including the milling time) with a yield of ∼90% as a mixture of two polymorphic forms. The mechanisms of formation and decomposition of ternary Mg2NiH4 under different hydrogen pressures were studied in detail using an in situ synchrotron radiation powder X-ray diffraction (SR-PXD) and high pressure DSC. The obtained experimental results are supported by morphological and microstructural investigations performed using SEM and high resolution STEM. Additionally, effects occurring during the desorption reaction were studied using DSC coupled with mass spectrometry.  相似文献   

19.
Fine Ni particles are effective in catalyzing hydrogen sorption of MgH2, but there is confusion about the extent of this effect in relation to Ni particle size and content. Here, effects of Ni particles of different sizes on hydrogen desorption of MgH2 were comparatively investigated. MgH2 mixed with only 2 at% of fine Ni particles rapidly desorbs hydrogen up to 6.5 wt% around 200–340 °C, but there is no significant difference in the desorption temperature of the mixture when Ni particles vary from 90 to 200 nm. Increasing the content of Ni to 4 at%, or a combined (2 at% Ni + 2 at% Fe), leads to hydrogen desorption starting from 160 °C. Further analyses of the literature suggest that the effectiveness of Ni catalysis largely depends on its site density over MgH2 surface, i.e., an optimal site density of catalytic particles is important in balancing the sorption properties of MgH2. The projected trend suggests that MgH2 can desorb hydrogen from 100 °C, the targeted temperature for fuel cells, if the number of catalyst sites is around 4 × 1014 per m2 of MgH2, or the number ratio of Ni to MgH2 particles is about a million to one.  相似文献   

20.
In this paper, the hydrogen storage properties and reaction mechanism of the 4MgH2 + LiAlH4 composite system with the addition of Fe2O3 nanopowder were investigated. Temperature-programmed-desorption results show that the addition of 5 wt.% Fe2O3 to the 4MgH2 + LiAlH4 composite system improves the onset desorption temperature to 95 °C and 270 °C for the first two dehydrogenation stage, which is lower 40 °C and 10 °C than the undoped composite. The dehydrogenation and rehydrogenation kinetics of 5 wt.% Fe2O3-doped 4MgH2 + LiAlH4 composite were also improved significantly as compared to the undoped composite. Differential scanning calorimetry measurements indicate that the enthalpy change in the 4MgH2–LiAlH4 composite system was unaffected by the addition of Fe2O3 nanopowder. The Kissinger analysis demonstrated that the apparent activation energy of the 4MgH2 + LiAlH4 composite (125.6 kJ/mol) was reduced to 117.1 kJ/mol after doping with 5 wt.% Fe2O3. Meanwhile, the X-ray diffraction analysis shows the formation of a new phase of Li2Fe3O4 in the doped composite after the dehydrogenation and rehydrogenation process. It is believed that Li2Fe3O4 acts as an actual catalyst in the 4MgH2 + LiAlH4 + 5 wt.% Fe2O3 composite which may promote the interaction of MgH2 and LiAlH4 and thus accelerate the hydrogen sorption performance of the MgH2 + LiAlH4 composite system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号