首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sulfonated poly(ether ether ketone) (SPEEK) membranes have been deposited on the both sides of a sulfonic acid functionalized graphene oxide (SGO) paper to form a proton exchange membrane (PEM) with a sandwiched structure. The obtained SPEEK/SGO/SPEEK membrane could exhibit proton conductivity close to Nafion® 112 and lower methanol permeability. The use of this SPEEK/SGO/SPEEK membrane greatly improves the performance of the semi-passive direct methanol fuel cell (DMFC). The semi-passive DMFC with the SPEEK/SGO/SPEEK membrane is found to be capable of delivering the peak power density 60% higher than that with the commercial Nafion® 112. This, along with its comparable durability to Nafion® 112, strongly suggests the great promise of using the SPEEK/SGO/SPEEK membrane as the PEM.  相似文献   

2.
In the present study, polyelectrolyte membranes based on partially sulfonated poly(ether ether ketone) (sPEEK) with various degrees of sulfonation are prepared. The optimum degree of sulfonation is determined according to the transport properties and hydrolytic stability of the membranes. Subsequently, various amounts of the organically modified montmorillonite (MMT) are introduced into the sPEEK matrices via the solution intercalation technique. The proton conductivity and methanol permeability measurements of the fabricated composite membranes reveal a high proton to methanol selectivity, even at elevated temperatures. Membrane based on sPEEK and 1 wt% of MMT, as the optimum nanoclay composition, exhibits a high selectivity and power density at the concentrated methanol feed. Moreover, it is found that the optimum nanocomposite membrane not only provides higher performance compared to the neat sPEEK and Nafion®117 membranes, but also exhibits a high open circuit voltage (OCV) at the elevated methanol concentration. Owing to the high proton conductivity, reduced methanol permeability, high power density, convenient processability and low cost, sPEEK/MMT nanocomposite membranes could be considered as the alternative membranes for moderate temperature direct methanol fuel cell applications.  相似文献   

3.
The porosity effect of catalyst electrodes in membrane-electrode assemblies (MEAs) using a hydrocarbon-based polymer as electrolyte and ionomer was investigated on physical and electrochemical properties by varying the content of ionomer binder (dry condition) in the catalyst electrodes. The MEAs were compared with the Nafion®-based MEA using Nafion® 112 and 5 wt.% ionomer solution (EW = 1100) in terms of porosity values, scanning electron microscopic images, Nyquist plots, dielectric spectra and IV polarization curves. In this study, sulfonated poly(ether ether ketone) (SPEEK) membranes with 25 ± 5 μm of thickness and 5 wt.% ionomer solutions have been prepared. The prepared membranes were characterized in terms of FT-IR, DSC and proton conductivity. Proton conductivity of the SPEEK membranes was compared with one of the Nafion® membranes with relative humidity. The porosity of the catalyst electrodes was calculated using the properties of catalyst, ionomer solution and solvent. As a result, the performance of the new type polymer (i.e., SPEEK in this study)-based MEA with the similar membrane conductivity and porosity of the catalyst electrode in the Nafion® MEA was similar to that of the Nafion® MEA.  相似文献   

4.
A novel functional organoclay was prepared using POP-backboned quaternary ammonium salts that contained sulfonic acid (–SO3H) to improve the performance of Nafion® membranes used in direct methanol fuel cells. Modified layered silicate clays were cast with Nafion®. The performance of the Nafion®/MMT-POPD400-PS composite membranes was evaluated in terms of methanol permeability, proton conductivity and cell performance. The methanol permeability of the composite membrane declined as the MMT-POPD400-PS content increased. The MMT was functionalized using organic sulfonic acid to enhance proton conductivity. The proton conductivity of the composite membrane exceeded that of pristine Nafion®. These effects essentially improved the single-cell performance of DMFC.  相似文献   

5.
In the present study, modified acid–base blend membranes were fabricated via incorporation of sulfonated poly(arylene ether benzimidazole) (SPAEBI) into sulfonated poly(arylene ether sulfone) (SPAES). These membranes had excellent methanol-barrier properties in addition to an ability to compensate for the loss of proton conductivity that typically occurs in general acid–base blend system. To fabricate the membranes, SPAEBIs, which served as amphiphilic polymers with different degrees of sulfonation (0–50 mol%), were synthesized by polycondensation and added to SPAES. It resulted in the formation of acid–amphiphilic complexes such as [PAES-SO3]+[H-SPAEBI] through the ionic crosslinking, which prevented SO3H groups in the complex from transporting free protons in an aqueous medium, contributing to a reduction of ion exchange capacity values and water uptake in the blend membranes, and leading to lower methanol permeability in a water–methanol mixture. Unfortunately, the ionic bonding formation was accompanied by a decrease of bound water content and proton conductivity, although the latter problem was solved to some extent by the incorporation of additional SO3H groups in SPAEBI. In the SPAES–SPAEBI blend membranes, enhancement of proton conductivity and methanol-barrier property was prominent at temperatures over 90 °C. The direct methanol fuel cell (DMFC) performance, which was based on SPAES–SPAEBI-50–5, was 1.2 times higher than that of Nafion® 117 under the same operating condition.  相似文献   

6.
A drawback of sulfonated aromatic main-chain polymers such as sulfonated poly(ether ether ketone)s (SPEEKs) is their high methanol crossover when the proton conductivity is sufficient for direct methanol fuel cell (DMFC) applications. To overcome this disadvantage, in this paper, the SPEEK substrate was coated with the crosslinked chitosan (CS) barrier layer to form the two-layer composite membranes. Scanning electron microscope (SEM) micrographs showed that the CS layer was tightly adhered on the SPEEK substrate and the thickness of CS layer could be adjusted by varying the concentration of CS solution. It was noticed that with the increment of thickness of CS layer, the methanol diffusion coefficient of the composite membranes significantly dropped from 3.15 × 10−6 to 2.81 × 10−7 cm2 s−1 at 25 °C which was about one order of magnitude lower than those of the pure SPEEK and Nafion® 117 membranes. In addition to the effective methanol barrier, the composite membranes possessed adequate thermal stability (the 5% weight lose temperature exceeded 240 °C) and good proton conductivity. The proton conductivity of all composite membranes was in the order of 10−2 S cm−1 and increased with the elevation of temperature. Furthermore, the composite membranes exhibited much higher selectivity (conductivity/methanol diffusion coefficient) compared with the pure SPEEK and Nafion® 117 membranes. These results indicated that introducing the crosslinked CS layer onto the SPEEK surface was an effective method for improving the performance of the SPEEK membrane, especially for reducing the methanol crossover.  相似文献   

7.
Sulfonated poly(ether ether ketone)s (SPEEKs) were substituted on a polymer main chain that had previously been prepared by sulfonation of poly(ether ether ketone)s in concentrated sulfuric acid for a specified time. The product was then blended with Nafion® to create composite membranes. The blended SPEEK-containing membranes featured flaky domains dispersed in the Nafion® matrix. These blends possessed a high thermal decomposition temperature. Additionally, owing to the more crystalline, the blended membranes had a lower water uptake compared to recast Nafion®, the methanol permeability was reduced to 1.70 × 10−6 to 9.09 × 10−7 cm2 s−1 for various SPEEK concentrations, and a maximum proton conductivity of ∼0.050 S cm−1 was observed at 30 °C. The single-cell performances of the Nafion®/SPEEK membranes, with various SPEEK concentrations and a certain degree of sulfonation, were 15–25 mW cm−2 for SPEEK53 and 19–27 mW cm−2 for SPEEK63, at 80 °C. The power density and open circuit voltage were higher than those of Nafion® 115 (power density = 22 mW cm−2). The blended membranes satisfy the requirements of proton exchange membranes for direct methanol fuel cell (DMFC) applications.  相似文献   

8.
Sulfonated poly(ether ether ketone)s (SPEEKs) are substituted on the main chain of the polymer by nitro groups and blended with Nafion® to attain composite membranes. The sulfonation, nitration and blending are achieved with a simple, inexpensive process, and the blended membranes containing the nitrated SPEEKs reveal a liquid-liquid phase separation. The blended membranes have a lower water uptake compared to recast Nafion®, and the methanol permeability is reduced significantly to 4.29 × 10−7-5.34 × 10−7 cm2 s−1 for various contents of nitrated SPEEK for S63N17, and 4.72 × 10−7-7.11 × 10−7 cm2 s−1 for S63N38, with a maximum proton conductivity of ∼0.085 S cm−1. This study examines the single-cell performance at 80 °C of Nafion®/nitrated SPEEK membranes with various contents of nitrated SPEEK and a degree of nitration of 23-25 mW cm−2 for S63N17 and 24-29 mW cm−2 for S63N38. Both the power density and open circuit voltage are higher than those of Nafion® 115 and recast Nafion®.  相似文献   

9.
We explore an approach to effectively enhance the properties of cost-effective hydrocarbon proton-exchange membranes for application in the direct methanol fuel cell (DMFC). This approach utilizes sulfonated silica nanoparticles (SA-SNP) as additives to modify sulfonated poly(arylene ether ether ketone ketone) (SPAEEKK). The interaction between the sulfonic acid groups of SA-SNP and those of SPAEEKK combined with hydrophilic-hydrophobic phase separation induce the formation of proton conducting channels, as evidenced by TEM images, which contribute to increases in the proton conductivity of the SPAEEKK/SA-SNP nanocomposite membrane. The presence of SA-SNP nanoparticles also reduces methanol crossover in the membrane. Therefore, the SPAEEKK/SA-SNP nanocomposite membrane shows a high selectivity, which is 2.79-fold the selectivity of Nafion®117. The improved selectivity of the SPAEEKK/SNP nanocomposite membrane demonstrates potential of this approach in providing hydrocarbon-based PEMs as alternatives to Nafion in direct methanol fuel cells.  相似文献   

10.
In this paper, Fe2O3–SO42−/Nafion® composite membranes were prepared by a solution casting method. The physico-chemical properties of composite membranes were characterized by X-ray diffraction (XRD), SEM–EDX and thermogravimetric analysis (TGA). The water uptake ability, proton conductivity, and methanol permeability of the composite membranes were evaluated and compared with the recast Nafion® membrane. The results showed that the proton conductivity and the water uptake of the composite membranes were slightly higher than that of the recast Nafion® membrane. The composite membrane containing 5 wt.% Fe2O3–SO42- showed superior ability to suppress methanol crossover, and it further improved the direct methanol fuel cell (DMFC) performances with both 1 M and 5 M methanol feeding, compared with the recast Nafion® membrane. The preliminary 30 h lifetime test of the DMFC with the composite membrane with 5% Fe2O3–SO42 indicated that the composite membrane is stable working at the real DMFC operating conditions at least during the test. These results suggest the applicability of the composite membranes in DMFCs.  相似文献   

11.
A strategy to prepare graphene oxide (GO)/carbon nano-tubes (CNTs)/sulfonated poly(arylene ether nitrile) (SPEN) composite membranes aimed for the proton exchange membrane is presented herein. GO and CNTs were incorporated into SPEN to improve the performances of proton exchange membrane. To study the synergistic effect of GO and CNTs, GO/SPEN and CNTs/SPEN membranes were also fabricated. The influences of GO and CNTs upon the microstructures, including thermal and mechanical properties, water uptake, swelling, proton conductivity and methanol permeability of composite membranes were investigated in detail. The membranes combining GO and CNTs could effectively avoid the self-agglomeration of GO or CNTs. In such a way, efficient proton transport channels were constructed by homogeneous dispersion of GO and CNTs within SPEN, leading to enhancement of proton conductivity. The proton conductivity of GO/CNTs/SPEN composite membrane with the ratio of 2:2 achieved the highest value of 0.1197 S/cm at 20 °C. Meanwhile, low methanol permeability (2.015 × 10?7 cm2 s?1) was still maintained. Consequently, the combination of CNTs and GO exhibited a favorable synergistic effect on the selectivity of proton exchange membrane, which is better than pure SPEN, Nafion 117, GO/SPEN, and CNTs/SPEN membranes. This feasibility study could provide an alternative approach to design GO/CNTs-based proton-conducting membranes for DMFC applications.  相似文献   

12.
Here we describe preparation and characterization of a series of nanocomposite polyelectrolytes based on partially sulfonated poly (ether ether ketone) (SPEEK) and organically modified montmorillonite (MMT). Optimum degree of sulfonation for SPEEK is selected based on its transport properties. MMT is modified via ion exchange reaction using a 2-acrylamido-2-methylpropanesulfonic acid (AMPS) as a functional modifier. AMPS-MMT at different loadings is introduced into the SPEEK matrices via the solution intercalation technique. Also, the nanocomposite membranes are fabricated using SPEEK and commercially available nanoclays like Cloisite Na (Na-MMT) and Cloisite 15A. Transport properties, proton conductivity and methanol permeability of the fabricated composite membranes are evaluated. Presence of AMPS-MMT significantly decreases the activation energy needed for proton conductivity. A membrane based on SPEEK/AMPS-MMT-3 wt% is selected as an optimum formulation which exhibits a high selectivity and power density at the elevated methanol concentrations. Moreover, it is found that the optimum nanocomposite membrane not only provides higher power output compared to the neat SPEEK and Nafion®117 membranes, but also exhibits a higher open circuit voltage (OCV) in comparison with pristine SPEEK and commercial Nafion® 117 membranes. Owing to the desirable transport and electrochemical properties SPEEK/AMPS-MMT nanocomposite can be considered as an alternative membrane for direct methanol fuel cell applications.  相似文献   

13.
A novel double layer proton exchange membrane (PEM) comprising a layer of structurally modified chitosan, as a methanol barrier layer, coated on Nafion®112 was prepared and assessed for direct methanol fuel cell (DMFC) applications. Scanning electron microscope (SEM) micrographs of the designed membrane revealed a tight adherence between layers, which indicate the high affinity of opposite charged polyelectrolyte layers. Proton conductivity and methanol permeability measurements showed improved transport properties of the designed membrane compared to Nafion®117. Moreover, DMFC performance tests revealed a higher open circuit voltage and power density, as well as overall fuel cell efficiency for the double layer membrane in comparison with Nafion®117, especially at elevated methanol solution feed. The obtained results indicate the designed double layer membrane as a promising PEM for high-performance DMFC applications.  相似文献   

14.
HMS-based sulphonated poly(arylene ether sulphone) (HMSSH) is synthesised using 4,4′-dihydroxy-α-methylstilbene (HMS) monomer to introduce an interesting stilbene core as crosslinkable group. Crosslinked blend membranes are obtained by blending the BPA-based sulphonated poly(arylene ether sulphone) (BPASH) with crosslinkable HMS-based sulphonated poly(arylene ether sulphone) by UV irradiation of the blend membrane. Compared to the native BPASH with crosslinked BPASH/HMSSH blend membranes, the crosslinked blend membranes greatly reduce the water uptake and methanol permeability with only a slight reduction in proton conductivity. The crosslinked blend membrane, which has a 6% HMSSH content, has a water uptake of 59%, methanol permeability of 0.75 × 10−6 cm2 s−1, and proton conductivity of 0.08 S cm−1. A membrane-electrode assembly is used to investigate single-cell performance and durability test for DMFC applications. Both the power density and open circuit voltage are higher than those of Nafion® 117. A maximum power density of 32 mW cm−2 at 0.2 V is obtained at 80 °C, which is higher than that of Nafion® 117 (25 mW cm−2).  相似文献   

15.
To simultaneously balance proton conduction and methanol diffusion, the acid-base hybrid membranes based on sulfonated poly(arylene ether nitrile) (SPEN) with 3-aminopropyltriethoxysilane functionalized graphene oxide (NGO) are prepared by solution-casting method. The loading of NGO is varied to explore the influence on cross-sectional morphology, dimensional stability, proton conductivity and methanol permeability of composite membranes. In this way, the interfacial ionic nanochannels are established at the interface of NGO and SPEN, constructing the long-range ionic nanochannels to provide fast proton transfer. Meanwhile, the formation of more zigzag transportation channels could effectively prevent methanol diffusion. The improved properties of the composite membranes can be attributed to the excellent interfacial interactions induced by acid-base and hydrogen bonding interactions. The composite membrane with 1 wt% NGO shows high proton conductivity (0.104 S·cm?1 at 20 °C) and low methanol permeability (1.74 × 10?7 cm2·s?1 at 20 °C), exhibiting higher selectivity (5.977 × 105 S cm?3s) compared with pure SPEN and Nafion 117 membranes. Therefore, it will provide a feasible pathway to conquer the trade-off effect between proton conductivity and methanol resistance for direct methanol fuel cells (DMFC) applications.  相似文献   

16.
The surface of sulfonated poly(arylene ether ketone) bearing carboxyl groups (SPAEK-C) was modified by alternating deposition of oppositely charged polypyrrole (PPY) and phosphotungstic acid (PWA) via the layer-by-layer (LBL) method in order to prevent the crossover of methanol in the direct methanol fuel cell (DMFC). FT-IR confirms that PPY and PWA are assembled in the multilayers successfully. The morphology of the membranes studied in detail by SEM shows the presence and stability of thin PPY/PWA layers coated on SPAEK-C membranes. Methanol permeability was determined and was shown to be effectively reduced. The selectivity of SPAEK-C-(PPY/PWA)n is 1 order more than Nafion® 117, which is attractive in DMFCs. Thermal stability, water uptake, water swelling and proton conductivity of the SPAEK-C and SPAEK-C-(PPY/PWA)n membranes were also investigated.  相似文献   

17.
To solve the conflict between high proton conductivity and low methanol crossover of pristine sulfonated aromatic polymer membranes, the polyorganosilicon doped sulfonated poly (ether ether ketone ketone) (SPEEKK) composite membranes were prepared by introducing polyorganosilicon additive with various functional groups into SPEEKK in this study. Scanning electron microcopy (SEM) images showed the obtained membranes were compact. No apparent agglomerations, cracks and pinholes were observed in the SEM images of composite membranes. The good compatibility between polymer and additive led to the interconnection, thus producing new materials with great characteristics and enhanced performance. Besides, the dual crosslinked structure could be formed in composite membranes through the condensation of silanols and the strong interaction between matrix and additive. The formation of dual crosslinked structure optimized the water absorption, enhanced the hydrolytic stability and oxidative stability of membranes. Especially, the incorporation of additive improved the strength and flexibility of composite membranes at the same time, meaning that the life of the composite membranes might be extended during the fuel cell operation. Meanwhile, the proton conductivity improved with increasing additive content due to the loading of more available acidic groups. It is noteworthy that at 25% additive loading, the proton conductivity reached a maximum value of 5.4 × 10−2 S cm−1 at 25 °C, which exceeded the corresponding value of Nafion@ 117 (5.0 × 10−2 S cm−1) under same experimental conditions. The composite membrane with 20 wt% additive was found to produce the highest selectivity (1.22 × 105 S cm−3) with proton conductivity of 4.70 × 10−2 S cm−1 and methanol diffusion coefficient of 3.85 × 10−7 cm2 s−1, suggesting its best potential as proton exchange membrane for direct methanol fuel cell application. The main novelty of our work is providing a feasible and environment-friendly way to prepare the self-made polyorganosilicon with various functional groups and introducing it into SPEEKK to fabricate the dual crosslinked membranes. This design produces new materials with outstanding performance.  相似文献   

18.
The organic-inorganic composite membranes are prepared by inserting poly(styrene sulfonate)-grafted silica particles into a polymer matrix of sulfonated poly(arylene ether sulfone) copolymer. The first step consisted in using atom transfer radical polymerization method to prepare surface-modified silica particles grafted with sodium 4-styrenesulfonate, referred to as PSS-g-SiO2. Ion exchange capacities up to 2.4 meq/g are obtained for these modified silica particles. In a second step, a sulfonated poly(arylene ether sulfone) copolymer is synthesized via nucleophilic step polymerization of sulfonated 4,4′-dichlorodiphenyl sulfone, 4,4′-dichlorodiphenyl sulfone and phenolphthalin monomers in the presence of potassium carbonate. The copolymer is blended with various amounts of silica particles to form organic-inorganic composite membranes. Esterification reaction is carried out between silica particles and the sulfonated polymer chains by thermal treatment in the presence of sodium hypophosphite, which catalyzed the esterification reaction. The water uptake, proton conductivity, and thermal decomposition temperature of the membranes are measured. All composite membranes show better water uptake and proton conductivity than the unmodified membrane. Moreover, the membranes are tested in a commercial single cell at 80 °C and 120 °C in humidified H2/air under different relative humidity conditions. The composite membrane containing 10%(w/w) of PSS-g-SiO2 particles, which have ester bonds between polymer chains and silica particles, showed the best performance of 690 mA cm−2 at 0.6 V, 120 °C and 30 %RH, even higher than the commercial Nafion® 112 membrane.  相似文献   

19.
Commercial Nafion®-115 (trademark registered to DuPont) membranes were modified by in situ polymerized phenol formaldehyde resin (PFR) to suppress methanol crossover, and SO3 groups were introduced to PFR by post-sulfonatation. A series of membranes with different sulfonated phenol formaldehyde resin (sPFR) loadings have been fabricated and investigated. SEM-EDX characterization shows that the PFR was well dispersed throughout the Nafion® membrane. The composite membranes have a similar or slightly lower proton conductivity compared with a native Nafion® membrane, but show a significant reduction in methanol crossover (the methanol permeability of sPFR/Nafion® composite membrane with 2.3 wt.% sPFR loading was 1.5 × 10−6 cm2 s−1, compared with the 2.5 × 10−6 cm2 s−1 for the native Nafion® membrane). In direct methanol fuel cell (DMFC) evaluation, the membrane electrode assembly (MEA) using a composite membrane with a 2.3 wt.% sPFR loading shows a higher performance than that of a native Nafion® membrane with 1 M methanol feed, and at higher methanol concentrations (5 M), the composite membrane achieved a 114 mW cm−2 maximum power density, while the maximum power density of the native Nafion® was only 78 mW cm−2.  相似文献   

20.
Sulfonated titania submicrospheres (TiO2-SO3H) prepared through a facile chelation method are incorporated into sulfonated poly(ether ether ketone) (SPEEK) to fabricate organic-inorganic hybrid membranes with enhanced proton conductivity and reduced methanol permeability for potential use in direct methanol fuel cells (DMFCs). The pristine titania submicrospheres (TiO2) with a uniform particle size are synthesized through a modified sol-gel method and sulfonated using 4,5-dihydroxy-1,3-benzenedisulfonic acid disodium salt as the sulfonation reagent. The sulfonation process is confirmed by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectra (XPS). The hybrid membranes are systematically characterized in terms of thermal property, mechanical property, ionic exchange capacity (IEC), swelling behavior, and microstructural features. The methanol barrier property and the proton conductivity of the SPEEK/TiO2-SO3H hybrid membranes are evaluated. The presence of the fillers reduces methanol crossover through the membrane. Compared with the unsulfonated TiO2-doped membranes, the TiO2-SO3H-doped ones exhibit higher proton conductivity due to the additional sulfonic acid groups on the surface of TiO2. The hybrid membrane doped with 15 wt.% TiO2-SO3H submicrospheres exhibits an acceptable proton conductivity of 0.053 S cm−1 and a reduced methanol permeability of 4.19 × 10−7 cm2 s−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号