首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Cu alloyed (18Cr–10Ni–3Cu) and a Cu free (18Cr–12.7Ni) austenitic stainless steel were tensile tested in gaseous hydrogen atmosphere at 20 °C and −50 °C. Depending on the test temperature, the Cu alloyed steel was extremely embrittled whereas the Cu free steel was only slightly embrittled. Austenite stability and inherent deformation mode are two main criteria for the resistance of austenitic stainless steels against hydrogen environment embrittlement. Based on the well known austenite stability criteria, the austenite stability of both steels should be very similar. Interrupted tensile tests show that martensite formation upon plastic deformation was much more severe in the Cu alloyed steel proving that the influence of Cu on austenite stability is overestimated in the empirical stability equations. When tested in high pressure H2, replacing Ni by Cu resulted in a fundamental change in fracture mode atmosphere, i.e. Ni cannot be replaced by Cu to reduce the costs of SS without compromising the resistance to hydrogen environment embrittlement.  相似文献   

2.
In order to develop safer and more energy-efficient, hydrogen pre-cooling systems for use in hydrogen refueling stations, it is necessary to identify a high-strength metallic material with greater thermal conductivity and lower susceptibility to hydrogen embrittlement, as compared with ordinary, stable austenitic stainless steels. To accomplish this task, the hydrogen compatibility of a precipitation-hardened, high-strength, copper-based alloy was investigated by slow-strain-rate tensile (SSRT), fatigue-life, fatigue-crack-growth (FCG) and fracture toughness tests in 115-MPa hydrogen gas at room temperature. The hydrogen solubility and diffusivity of the alloy were also determined. The hydrogen solubility of the alloy was two or three orders of magnitude lower than that of austenitic stainless steels. The alloy also demonstrated absolutely no hydrogen-induced degradation of its strength properties, a factor which could contribute to the reduction of costs related to the construction and maintenance of hydrogen refueling stations, owing to the downsizing and improved cooling performance of the pre-cooling systems.  相似文献   

3.
This work investigates the susceptibility of high-interstitial CrMn austenitic stainless steel CN0.96 to hydrogen environment embrittlement. In this context, an N-free model alloy of CN0.96 steel was designed, produced, and characterized. Both steels were subjected to tensile tests in air and in a high-pressure hydrogen gas atmosphere.Both steels undergo severe hydrogen embrittlement. The CN0.96 steel shows trans- and intergranular failure in hydrogen, whereas the N-free model alloy shows exclusively intergranular failure. The different failure modes could be related to different deformation modes that are induced by the presence or absence of N, respectively. In the CN0.96 steel, N promotes planar dislocation slip. Due to the absence of N in the model alloy, localized slip is less pronounced and mechanical twinning is a more preferred deformation mechanism. The embrittlement of the model alloy could therefore be related to mechanisms that are known from hydrogen embrittlement of twinning-induced plasticity steels.  相似文献   

4.
The chemical composition of an AISI type 304 austenitic stainless was systematically modified in order to evaluate the influence of the elements Mo, Ni, Si, S, Cr and Mn on the material’s susceptibility to hydrogen environment embrittlement (HEE). Mechanical properties were evaluated by tensile testing at room temperature in air at ambient pressure and in a 40 MPa hydrogen gas atmosphere. For every chemical composition, the corresponding austenite stability was evaluated by magnetic response measurements and thermodynamic calculations based on the Calphad method. Tensile test results show that yield and tensile strength are negligibly affected by the presence of hydrogen, whereas measurements of elongation to rupture and reduction of area indicate an increasing ductility loss with decreasing austenite stability. Concerning modifications of alloy composition, an increase in Si, Mn and Cr content showed a significant improvement of material’s ductility compared to other alloying elements.  相似文献   

5.
The effect of high-pressure gaseous H2 on the fracture behavior of pipeline steel X70 and austenitic stainless steel type 304L and 316L was investigated by means of notched-tensile tests at 10 MPa H2 gas and various test speed. The notch tensile strength of pipeline X70 steel and austenitic stainless steels were degraded by gaseous H2, and the deterioration was accompanied by noticeable changes in fracture morphology. The loss of notch tensile strength of type 316L and X70 steels was comparable, but type 304L was more susceptible to hydrogen embrittlement than the others. In the X70 steel, hydrogen embrittlement increased as test speed decreased until the test speed reached 1.2 × 10?3 mm/s, but the effect of test speed was not significant in 304L and 316L steels.  相似文献   

6.
Hydrogen embrittlement of super duplex stainless steel in acid solution   总被引:1,自引:0,他引:1  
Super duplex stainless steel (SDSS) is a good choice of material when resistance to harsh environments is needed. Despite the material’s excellent corrosion resistance and high strength, a number of in-service failures have been recorded. The root cause of these failures was environmentally induced cracking initiated at manufacturing and in-service metallurgical defects. In this study the hydrogen embrittlement of pre-strained super duplex stainless steel specimens was investigated after 48 h cathodic charging in 0.1 M H2SO4. The metallurgical changes that resulted from four levels of cold work (4, 8, 12, and 16% plastic strain) were considered and their effect on the embrittlement of the SDSS alloy was investigated. After hydrogen charging, the specimens were pulled immediately to failure and the mechanical properties evaluated. The obtaining fracture morphology was investigated using low and high magnification microscopy. Experimental results indicated that charging the super duplex stainless steel alloy with hydrogen caused varying degrees of embrittlement depending on cold work level. Increasing cold work resulted in a reduction of the elongation to failure. Microscopic investigation confirmed the significant effect of cold work on the hydrogen embrittlement susceptibility of the super duplex stainless steel alloy investigated.  相似文献   

7.
Hydrogen embrittlement of a precipitation-hardened Fe–26Mn–11Al-1.2C (wt.%) austenitic steel was examined by tensile testing under hydrogen charging and thermal desorption analysis. While the high strength of the alloy (>1 GPa) was not affected, hydrogen charging reduced the engineering tensile elongation from 44 to only 5%. Hydrogen-assisted cracking mechanisms were studied via the joint use of electron backscatter diffraction analysis and orientation-optimized electron channeling contrast imaging. The observed embrittlement was mainly due to two mechanisms, namely, grain boundary triple junction cracking and slip-localization-induced intergranular cracking along micro-voids formed on grain boundaries. Grain boundary triple junction cracking occurs preferentially, while the microscopically ductile slip-localization-induced intergranular cracking assists crack growth during plastic deformation resulting in macroscopic brittle fracture appearance.  相似文献   

8.
This study investigated the influence of segregations on hydrogen environment embrittlement (HEE) of AISI 304L type austenitic stainless steels. The microstructure of tensile specimens, that were fabricated from commercially available AISI 304L steels and tested by means of small strain-rate tensile tests in air as well as hydrogen gas at room temperature, was investigated by means of combined EDS and EBSD measurements. It was shown that two different austenitic stainless steels having the same nominal alloy composition can exhibit different susceptibilities to HEE due to segregation effects resulting from different production routes (continuous casting/electroslag remelting). Local segregation-related variations of the austenite stability were evaluated by thermodynamic and empirical calculations. The alloying element Ni exhibits pronounced segregation bands parallel to the rolling direction of the material, which strongly influences the local austenite stability. The latter was revealed by generating and evaluating two-dimensional distribution maps for the austenite stability. The formation of deformation-induced martensite was shown to be restricted to segregation bands with a low Ni content. Furthermore, it was shown that the formation of hydrogen induced surface cracks is strongly coupled with the existence of surface regions of low Ni content and accordingly low austenite stability. In addition, the growth behavior of hydrogen-induced cracks was linked to the segregation-related local austenite stability.  相似文献   

9.
The effect of cold rolling on hydrogen embrittlement in stable 18Cr–1Mn–11Ni-0.15 N austenitic stainless steels was investigated. Alloy plates were cold-rolled to 15% or 30% reduction, then pre-charged with hydrogen and subjected to tensile testing with slow strain rate. Hydrogen-induced degradation of tensile elongation became increasingly severe with the increase in the degree of cold rolling. During cold rolling, deformation twins with various orientations were actively generated, and twins with specific orientations were vulnerable to hydrogen-induced cracking. Cold rolling also increased the density of defects, and thereby facilitated penetration of hydrogen into the steels. The combination of cracks generated at the twin boundaries, and the promoted hydrogen diffusion caused severe hydrogen embrittlement in the cold-rolled steels.  相似文献   

10.
The effects of internal hydrogen and environmental hydrogen on the hydrogen embrittlement of 304 austenitic stainless steels (ASSs) with varying degrees of pre-strain were investigated by a tensile test under cathodic hydrogen-charged, gaseous hydrogen and hydrogen-charged and gaseous hydrogen combined conditions. The internal hydrogen embrittlement of the 304 ASSs increased with increasing pre-strain, while the hydrogen embrittlement caused by the environment hydrogen increased and then decreased with increasing pre-strain. The hydrogen embrittlement mechanisms caused by the internal hydrogen or environmental hydrogen were different. The cracks caused by internal hydrogen or environmental hydrogen are mainly initiated in grain interior or at grain boundary, respectively. Under the coupling condition of internal hydrogen and environmental hydrogen, the hydrogen embrittlement of 304 ASSs was the strongest and increased with increasing pre-strain. Environmental hydrogen was dominant for low levels of pre-deformed specimens. Internal hydrogen was dominant for high levels of pre-deformed specimen.  相似文献   

11.
Hydrogen embrittlement of Cr-Mn-N-austenitic stainless steels   总被引:1,自引:0,他引:1  
Cr-Mn-N austenitic steels show a unique combination of properties, i.e. high strength, high ductility, non magnetic and good corrosion resistance at costs being much lower compared to Cr-Ni austenitic steels. Hydrogen environment embrittlement (HEE) was investigated by slow displacement tensile testing in hydrogen atmosphere at 10 MPa and −50 °C. The fracture appearance of stable Cr-Mn-N austenitic steels with lower Mn contents (12Mn-0.7N) was transgranular whereas higher Mn contents (18Mn-0.7N) resulted in twin boundary fracture. This change in fracture morphology was related to a modest change in macroscopic ductility. Such fracture behaviour is similar to what is known from metastable Cr-Ni austenitic steels, therefore, Mn and/or N cannot be used to replace Ni in stable austenitic high HEE resistant steels.  相似文献   

12.
In the present work, an investigation on the susceptibility to hydrogen embrittlement of AISI 304 and 310 austenitic stainless steels was performed. The hydrogen embrittlement process leads to degradation of mechanical properties and can be accelerated by the presence of surface defects combined with elevated surface hardness. Tensile test specimens of the selected materials were machined by turning with different cutting parameters in order to create variations in surface finish conditions. The samples thus prepared were submitted to tensile tests before and after hydrogen permeation by cathodic charging. Regarding the AISI 304 steel, it was possible to notice that the presence of strain-induced martensite on the material surface led to severe hydrogen embrittlement. In the case of the AISI 310 steel, due to its higher nickel amount, no martensite formation could be detected, and this steel was found to be less susceptible to embrittlement in the tested conditions.  相似文献   

13.
The hydrogen embrittlement of 15Cr martensitic stainless steel, for steam turbine last stage blades, was systematically studied by using slow strain rate tensile (SSRT) test and constant loading tensile (CLT) test at room temperature and 80 °C to simulate the service conditions. It was shown that, despite the lower hydrogen concentration absorbed during SSRT, the hydrogen-induced fracture strength of 15Cr steel for SSRT was lower than the threshold fracture strength for CLT. This was due to the remarkable enhancement in local hydrogen concentration due to the transportation of hydrogen by mobile dislocation during SSRT. In addition, although the higher hydrogen concentration was absorbed during SSRT at 80 °C, the hydrogen embrittlement susceptibility of 15Cr steel for SSRT at 80 °C was lower than that at room temperature, because the degree of local hydrogen accumulation decreased at a higher temperature.  相似文献   

14.
The effect of grain size variation (11 μm, 34 μm) on the hydrogen-induced tensile properties degradation of a Co-free cost-effective Fe40Mn40Ni10Cr10 austenitic medium entropy alloy was investigated using a slow strain rate test. Despite improving both strength and ductility with decreasing the grain size in non-charged conditions, the fine-grain alloy showed a higher relative elongation loss after electro-chemical hydrogen charging. The larger ductility loss in the fine-grain alloy was ascribed to the fast propagation rate of major intergranular cracks and the drastic strain hardening rate drop of the alloy under hydrogen charging. The Schmid factor analysis showed that the enhanced dislocation activity in the fine-grain alloy compared with coarse-grain one was responsible for rapid hydrogen transfer to the grain boundaries, fast dislocation pile-up behind the grain boundaries, and, consequently, more severe hydrogen embrittlement. The significant stress concentration near the grain boundaries and fast intergranular crack propagation were recognized to be the main reason for premature fracture in fine-grain alloy.  相似文献   

15.
The fatigue properties of a novel high aluminum austenitic stainless steel with a high resistance against hydrogen embrittlement were investigated. S–N tests in 40 MPa H2 at −50 °C resulted in a reduction in fatigue life by a factor of about 2 compared to air. Striation analysis revealed no acceleration of crack growth rate but accelerated crack initiation or accelerated short crack growth in H2. No apparent difference in fatigue fracture characteristics and striation morphology between the air and H2 tested specimens could be identified.  相似文献   

16.
The objective of this work is to identify microstructural variables that lead to the large scatter of the relative resistance of 316 grade stainless steels to hydrogen environment embrittlement. In slow displacement rate tensile testing, two almost identical (by nominal chemical composition) heats of SUS 316L austenitic stainless steel showed significantly different susceptibilities to HEE cracking. Upon straining, drawn bar showed a string-like duplex microstructure consisting of α′-martensite and γ-austenite, whereas rolled plate exhibited a highly regular layered α′-γ structure caused by measured gradients in local Ni content (9.5–13 wt%). Both martensite and austenite are intrinsically susceptible to HEE. However, due to Ni macro segregation and microstructural heterogeneity, fast H-diffusion in martensite layers supported a 10 times faster H-enhanced crack growth rate and thus reduced tensile reduction in area. Nickel segregation is thus a primary cause of the high degree of variability in H2 cracking resistance for different product forms of 316 stainless steel.  相似文献   

17.
The susceptibility to hydrogen embrittlement behavior was investigated in an interstitial Mn–N austenitic steel HR183 and stainless steel 316L. Hydrogen was introduced by cathodic hydrogen charging at 363 K. HR183 has stronger austenite stability than 316L despite its lower nickel content, the addition of manganese and nitrogen inhibited martensitic transformation during the slow strain rate tensile deformation. Due to the diffusion of hydrogen being delayed by the interstitial solution of nitrogen atoms and the uniform dislocation slips, hydrogen permeates more slowly in HR183 than 316L, contributing to an 84.79 μm thinner brittle fracture layer in HR183 steel. Hydrogen charging caused elongation losses in both 316L and HR183 steels associated with the hydrogen-enhanced localized plasticity (HELP) and hydrogen-enhanced decohesion (HEDE) mechanism. However, the hydrogen embrittlement susceptibility of HR183 is 3.4 times lower than that of 316L according to the difference in elongation loss between the two steel after hydrogen charging. Deformation twins trapped a lot amount of hydrogen leading to brittle intergranular fracture in 316L. The multiple directions of slip in HR183 steel suppressed the strain localization inside grains and delayed the adverse effects conducted by HELP and HEDE mechanism, eventually inhibiting server hydrogen embrittlement in the HR183 steel. This study is assisting in the development of low-cost stainless steel with excellent hydrogen embrittlement resistance that can be used in harsh hydrogen-containing environments.  相似文献   

18.
Low-temperature mechanical properties of a high-manganese austenitic steel were evaluated with and without hydrogen pre-charging to examine the applicability of the alloy as a material for hydrogen infrastructure. The high-manganese steel, along with the conventional 304 and 316 L austenitic steels, was examined for hydrogen-related properties including hydrogen content after gas-phase pre-charging, tensile properties, and Charpy impact toughness at different temperatures ranging from room temperature to −80 and −196 °C, respectively, and the resultant fracture surfaces. Under hydrogen-charged conditions, the high-manganese steel showed low-temperature mechanical properties comparable to those of conventional austenitic steels, suggesting the potential of the alloy for structural applications in hydrogen environment.  相似文献   

19.
The susceptibility to hydrogen embrittlement and diffusion behavior of hydrogen were evaluated in interstitial nitrogen-alloyed austenitic steel QN1803 and 304 and 316 L stainless steels. The amount of transformed martensite and the activation energy of hydrogen diffusion were revealed via electron backscattering diffraction and thermal desorption spectroscopy. The austenite stability of QN1803 during the deformation process was higher than that of 304 and 316 L. However, the hydrogen content of QN1803 was high because of the small grain size and low activation energy of hydrogen diffusion. For the stable QN1803 and 316 L austenitic steels, martensite had no evident harmful effect because of its discrete distribution. A planar dislocation slip was observed in QN1803 during deformation. Hydrogen charging enhanced dislocation mobility, leading to severe strain localization. Thus, the severe strain in QN1803 promoted microcracking.  相似文献   

20.
Development of a surface coating with high resistance to hydrogen entry under a high-pressure hydrogen-gas environment is presented. Two aluminum-based coatings were developed on the basis of preliminary tests: two-layer (alumina/Fe–Al) and three-layer (alumina/aluminum/Fe–Al) coatings, deposited onto cylindrical and pipe (Type 304 austenitic stainless steel) surfaces by immersion into a specially blended molten aluminum alloy. The coated specimens were exposed to hydrogen gas at 10–100 MPa at 270 °C for 200 h. Specimen hydrogen content was measured by thermal desorption analysis; hydrogen distributions were analyzed by secondary ion mass spectroscopy. Both coatings showed high hydrogen-entry resistance at 10 MPa. However, resistance of the two-layer coating clearly decreased with an increase in pressure. In contrast, the three-layer coating showed excellent hydrogen-entry resistance at a wide pressure range (10–100 MPa), achieved by the combined effect of alumina, aluminum, and Fe–Al layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号