首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Targeting at hydrogen purification, cross-linked organic–inorganic reverse-selective membranes containing poly(ethylene oxide) (PEO) are fabricated in situ by using functional oligomers (O,O′-bis(2-aminopropyl) polypropylene glycol-block-polyethylene glycol-block-polypropylene glycol: Jeffamine® ED-2003) with a high content of PEO and epoxy-functional silanes (3-glycidyloxypropyltrimethoxysilane: GOTMS). Changes in physicochemical properties due to varying silica content have been characterized; including a great decline in melting temperature; an improvement in glassy and degradation temperature, and the suppression of PEO crystallinity. The strong affinity between quadrupolar CO2 and polar ethylene oxide (EO) groups enhances the CO2/H2 separation performance of hybrid membranes, which can be further tuned by controlling the organic/inorganic ratio. The organic–inorganic hybrid membrane with 90 wt% of ED-2003 demonstrates an appealing CO2 permeability of 367 Barrer with an attractive CO2/H2 selectivity of 8.95 at 3.5 atm and 35 °C. The transport performance trend with composition variations is explained by analyzing the calculated solubility and diffusivity based on the solution-diffusion mechanism. Moreover, CO2 permeability increases with applied pressure in pure gas tests because of CO2 plasticization phenomena, which is beneficial for CO2/H2 separation. Attributing to CO2 plasticization and CO2 dominant sorption, the mixed gas test results of the membrane containing only 25 wt% ED-2003 show greatly improved CO2/H2 selectivity of 13.2 with CO2 permeability of 148 Barrer at 35 °C compared to pure gas results. Interestingly, at a stipulated CO2 pressure, the inherent tension in cross-linked networks maintains the CO2 permeability stable with the time. The cross-linked organic–inorganic membranes with enhancements in mechanical and thermal properties are promising for industrial-scale hydrogen purification.  相似文献   

2.
We have demonstrated, for the first time, a polymer blend comprising poly(vinylidene fluoride) (PVDF) and a room-temperature ionic liquid (RTIL) that shows a high CO2 permeability of 1778 Barrer with CO2/H2 and CO2/N2 selectivity of 12.9 and 41.1, respectively. The low viscosity RTIL, 1-ethyl-3-methylimidazolium tetracyanoborate ([emim][B(CN)4]) possesses a high CO2 solubility, and plays a significant role in CO2 separation, whereas PVDF provides the mechanical strength to the blend membranes. A series of PVDF/[emim][B(CN)4] polymer blends with different compositions were tested for their gas separation performance involving H2, N2 and CO2 in both pure gas and mixed gas conditions. Both optical observation and Maxwell predictions confirm the heterogeneous nature of the PVDF/[emim][B(CN)4] system. However, compared to miscible ionic liquid based blends, where molecular level interactions may restrain chain flexibility and reduce gas permeability, heterogeneous PVDF/RTIL blend systems show far superior gas transport properties. Most of these blend membranes outperform most reported materials and their gas transport and separation capabilities fall within the attractive region bound by the “2008 Robeson Upper Limit” for CO2/H2 and CO2/N2 gas pairs, and are also very stable at trans-membrane pressure up to 5 atm. Therefore, they are potential materials for H2 purification and CO2 capture from hydrogen production and flue gas.  相似文献   

3.
The molecular-level mixed matrix membranes (MMMs) comprising Pebax® and POSS have been developed by tuning the membrane preparation process in this work. They exhibit a simultaneous enhancement in CO2 permeability and CO2/H2 selectivity by optimizing the POSS content at extremely low loadings. This is mainly attributed to the large cavity of POSS itself and its effect on the segmental-level polymeric chain packing. More interestingly, the Pebax®/POSS MMMs reveal a much higher separation performance in the mixed gas test than that in the pure gas test. The highest CO2/H2 selectivity reaches 52.3 accompanied by CO2 permeability of 136 Barrer at 8 atm and 35 °C. This is due to the CO2-induced plasticization that improves the free volume and polymer chain mobility, hence benefiting the interaction between the polymer matrix and penetrant CO2. These features may ensure the superiority of Pebax®/POSS molecular-level MMMs as CO2-selective membranes in the industrial application of hydrogen purification.  相似文献   

4.
Hydrogen provides reliable, sustainable, environmental and climatic friendly energy to meet world's energy requirement and it also has high energy density. Hydrogen is relevant to all of the energy sectors-transportation, buildings, utilities and industry. In all of these sectors, hydrogen-rich gas streams are needed. Thus, hydrogen-selective membrane technology with superior performances is highly demanded for separation and purification of hydrogen gas mixtures. In this study, novel [Al4(OH)2(OCH3)4(H2N-BDC)3xH2O (CAU-1) MOF membranes with accessible pore size of 0.38 nm are evaluated for this goal of hydrogen purification. High-quality CAU-1 membranes have been successfully synthesized on α-Al2O3 hollow ceramic fibers (HCFs) by secondary growth assisted with the homogenously deposited CAU-1 nanocrystals with a size of 500 nm as seeds. The energy-dispersive X-ray spectroscopy study shows that the HCFs substrates play dual roles in the membrane preparation, namely aluminum source and as a support. The crystals in the membrane are intergrown together to form a continuous and crack-free layer with a thickness of 4 μm. The gas sorption ability of CAU-1 MOF materials is examined by gas adsorption measurement. The isosteric heats of adsorption with average values of 4.52 kJ/mol, 12.90 kJ/mol, 12.82 kJ/mol and 27.99 kJ/mol are observed for H2, N2, CH4, and CO2 respectively, indicating different interactions between CAU-1 framework and these gases. As-prepared HCF supported CAU-1 membranes are tested by single and binary gas permeation of H2/CO2, H2/N2 and H2/CH4 at different temperatures, feed pressures and testing time. The permeation results show preferential permeance of H2 over CO2, N2, and CH4 with high separation factors of 12.34, 10.33, and 10.42 for H2/CO2, H2/N2, H2/CH4, respectively. The temperature, pressure and test time dependent studies reveal that HCFs supported CAU-1 membranes possess high stability, resistance to cracking, temperature cycling, high reproducibility, these of which combined with high separation efficiency make this type of MOF membranes are promising for hydrogen recycling from industrial exhausts.  相似文献   

5.
In this work, CO2 capture and H2 production during the steam gasification of coal integrated with CO2 capture sorbent were investigated using a horizontal fixed bed reactor at atmospheric pressure. Four different temperatures (650, 675, 700, and 750 °C) and three sorbent-to-carbon ratios ([Ca]/[C] = 0, 1, 2) were studied. In the absence of sorbent, the maximum molar fraction of H2 (64.6%) and conversion of coal (71.3%) were exhibited at the highest temperature (750 °C). The experimental results verified that the presence of sorbent in the steam gasification of coal enhanced the molar fraction of H2 to more than 80%, with almost all CO2 was fixed into the sorbent structure, and carbon monoxide (CO) was converted to H2 and CO2 through the water gas shift reaction. The steam gasification of coal integrated with CO2 capture largely depended on the reaction temperature and exhibited optimal conditions at 675 °C. The maximum molar fraction of H2 (81.7%) and minimum CO2 concentration (almost 0%) were obtained at 675 °C and a sorbent-to-carbon ratio of 2.  相似文献   

6.
A detailed and comprehensive simulation model of a H2 production plant based on the Sorption Enhanced Reforming (SER) process of natural gas has been developed in this work. Besides thermodynamic advantages related to the shift of reforming equilibrium, SER technology features an intrinsic CO2 capture that can be of interest in environmentally constrained economies. The model comprises natural gas treatment, H2 and CO2 compression, as well as H2 purification with an adsorption unit that has been integrated within the SER process by using the off-gas for sorbent regeneration. A complete thermal integration has been also performed between the available hot gas streams in the plant, so that high pressure steam is generated and used to generate power in a steam cycle.  相似文献   

7.
The search for a clean energy source as well as the reduction of CO2 emissions to the atmosphere are important strategies to resolve the current energy shortage and global warming issues. We have demonstrated, for the first time, a Pebax/poly(dimethylsiloxane)/polyacrylonitrile (Pebax/PDMS/PAN) composite hollow fiber membrane not only can be used for flue gas treatment but also for hydrogen purification. The composite membranes display attractive gas separation performance with a CO2 permeance of 481.5 GPU, CO2/H2 and CO2/N2 selectivity of 8.1 and 42.0, respectively. Minimizing the solution intrusion using the PDMS gutter layer is the key to achieving the high gas permeance while the interaction between poly(ethylene oxide) (PEO) and CO2 accounts for the high selectivity. Effects of coating solution concentration and coating time on gas separation performance have been investigated and the results have been optimized. To the best of our knowledge, this is the first polymeric composite hollow fiber membrane for hydrogen purification. The attractive gas separation performance of the newly developed membranes may indicate good potential for industrial applications.  相似文献   

8.
In this study, we identify and characterize known and new environmental consequences associated with CO2 capture from power plants, transport by pipeline and storage in geological formations. We have reviewed (analogous) environmental impact assessment procedures and scientific literature on carbon capture and storage (CCS) options. Analogues include the construction of new power plants, transport of natural gas by pipelines, underground natural gas storage (UGS), natural gas production and enhanced oil recovery (EOR) projects. It is investigated whether crucial knowledge on environmental impacts is lacking that may postpone the implementation of CCS projects. This review shows that the capture of CO2 from power plants results in a change in the environmental profile of the power plant. This change encompasses both increase and reduction of key atmospheric emissions, being: NOx, SO2, NH3, particulate matter, Hg, HF and HCl. The largest trade-offs are found for the emission of NOx and NH3 when equipping power plants with post-combustion capture. Synergy is expected for SO2 emissions, which are low for all power plants with CO2 capture. An increase in water consumption ranging between 32% and 93% and an increase in waste and by-product creation with tens of kilotonnes annually is expected for a large-scale power plant (1 GWe), but exact flows and composition are uncertain. The cross-media effects of CO2 capture are found to be uncertain and to a large extent not quantified. For the assessment of the safety of CO2 transport by pipeline at high pressure an important knowledge gap is the absence of validated release and dispersion models for CO2 releases. We also highlight factors that result in some (not major) uncertainties when estimating the failure rates for CO2 pipelines. Furthermore, uniform CO2 exposure thresholds, detailed dose-response models and specific CO2 pipeline regulation are absent. Most gaps in environmental information regarding the CCS chain are identified and characterized for the risk assessment of the underground, non-engineered, part of the storage activity. This uncertainty is considered to be larger for aquifers than for hydrocarbon reservoirs. Failure rates are found to be heavily based on expert opinions and the dose-response models for ecosystems or target species are not yet developed. Integration and validation of various sub-models describing fate and transport of CO2 in various compartments of the geosphere is at an infant stage. In conclusion, it is not possible to execute a quantitative risk assessment for the non-engineered part of the storage activity with high confidence.  相似文献   

9.
In this study, a nanocomposite graphene oxide (GO) incorporated poly (dimethyl siloxane) (PDMS) membrane was produced and used for the purification of hydrogen (H2) by separating the (CO2). The produced membrane was characterized and the single-gas permeability test was performed. Effects of GO addition, trans-membrane pressure and membrane thickness on the gas separation performance of membrane were evaluated as a function of permeability and CO2/H2 selectivity. GO addition increased the CO2/H2 selectivity and H2 purification performance. The highest CO2 permeability of 3670 Barrer and CO2/H2 selectivity of 11.7 were obtained when the GO loading was 0.5 wt% when the trans-membrane pressure was 0.2 Mpa.  相似文献   

10.
Two types of advanced nano-composite materials have been formed by incorporating as-synthesized wet-state zeolitic imidazolate frameworks-8 (ZIF-8) nano-particles into a polybenzimidazole (PBI) polymer. The loadings of ZIF-8 particles in the two membranes (i.e., 30/70 (w/w) ZIF-8/PBI and 60/40 (w/w) ZIF-8/PBI) are 38.2 vol % and 63.6 vol %, respectively. Due to different ZIF-8 loadings, variations in particle dispersion, membrane morphology and gas separation properties are observed. Gas permeation results suggest that intercalation occurs when the ZIF-8 loading reaches 63.6 vol %. The incorporation of ZIF-8 particles significantly enhances both solubility and diffusion coefficients but the enhancement in diffusion coefficient is much greater. Mixed gas tests for H2/CO2 separation were conducted from 35 to 230 °C, and both membranes exhibit remarkably high H2 permeability and H2/CO2 selectivity. The 30/70 (w/w) ZIF-8/PBI membrane has an H2/CO2 selectivity of 26.3 with an H2 permeability of 470.5 Barrer, while the 60/40 (w/w) ZIF-8/PBI membrane has an H2/CO2 selectivity of 12.3 with an H2 permeability of 2014.8 Barrer. Mixed gas data show that the presence of CO or water vapor impurity in the feed gas stream does not significantly influence the membrane performance at 230 °C. Thus, the newly developed H2-selective membranes may have bright prospects for hydrogen purification and CO2 capture in realistic industrial applications such as syngas processing, integrated gasification combined cycle (IGCC) power plant and hydrogen recovery.  相似文献   

11.
In this study, gas hydrate from CO2/H2 gas mixtures with the addition of tetrahydrofuran (THF) was formed in a semi-batch stirred vessel at various pressures and temperatures to investigate the CO2 separation/recovery properties. This mixture is of interest to CO2 separation and recovery from Integrated Gasification Combine Cycle (IGCC) power plants. During hydrate formation the gas uptake was determined and composition changes in the gas phase were obtained by gas chromatography. The impact of THF on hydrate formation from the CO2/H2 was observed. The addition of THF significantly reduced the equilibrium formation conditions. 1.0 mol% THF was found to be the optimum concentration for CO2 capture based on kinetic experiments. The present study illustrates the concept and provides thermodynamic and kinetic data for the separation/recovery of CO2 (pre-combustion capture) from a fuel gas (CO2/H2) mixture.  相似文献   

12.
In this study, we investigate the configuration of a Pd–Au composite membrane on a porous nickel support and membrane modules for withstanding the capture of CO2 from a coal gasifier for a long time. The hydrogen permeation flux, recovery and CO2 capture were experimentally evaluated using two different modules and two conditions. As in our study, the CO2 capturing and durability tests were performed with a 40% CO2/60% H2 feed gas mixture in stainless steel (SS) 316L and 310S membrane modules. As a result, it is achieved the durability tests for more than 1150, 1100 (SS 316L module) and 3150 h (SS 310S module) with pressure cycles from 100 to 2000 kPa at 673 K. The durability of the membranes and membrane modules was demonstrated under pressure cycles from 100 to 2000 kPa at 673 K and the SS 310S module was very stable after 3150 h. The durability test for more than 3000 h demonstrated that there was no significant intermetallic diffusion between the PNS and Pd–Au layer. The CO2 capturing test performed using a 40% CO2/60% H2 mixture confirmed that the CO2 capturing capacity of the membrane and membrane module was 2.0 L/min for a CO2 concentration in the retentate stream of 92.3% and that the hydrogen recovery ratio increased with increasing pressure and reached 93.4%. Furthermore, we suggest that the SS 310S module configuration, CO2 capturing test using Pd–Au/ZrO2/PNS membrane and membrane module is very suitable for application as an Integrated Gasification Combined Cycle (IGCC) system due to very simple numbering-up stackable module design was successful.  相似文献   

13.
Industrial hydrogen production may prefer CO2-selective membranes because high-pressure H2 can therefore be produced without additional recompression. In this study, high performance CO2-selective membranes are fabricated by modifying a polymer–silica hybrid matrix (PSHM) with a low molecular weight poly(ethylene glycol) dimethyl ether (PEGDME). The liquid state of PEGDME and its unique end groups eliminate the crystallization tendency of poly(ethylene glycol) (PEG). The methyl end groups in PEGDME hinder hydrogen bonding between the polymer chains and significantly enhance the gas diffusivity. In pure gas tests, the membrane containing 50 wt% additive shows CO2 gas permeability and CO2/H2 selectivity of 1637 Barrers and 13 at 35 °C, respectively. In order to explore the effect of real industrial conditions, the gas separation performance of the newly developed membranes has been studied extensively using binary (CO2/H2) and ternary gas mixtures (CO2/H2/carbon monoxide (CO)). Compared to pure gas performance, the second component (H2) in the binary mixed gas test reduces the CO2 permeability. The presence of CO in the feed gas stream decreases both CO2 and H2 permeability as well as CO2/H2 selectivity as it reduces the concentration of CO2 molecules in the polymer matrix. The mixed gas results affirm the promising applications of the newly developed membranes for H2 purification.  相似文献   

14.
In this work, highly doped ceria with lanthanum, La0.5Ce0.5O2−δ (LDC), are developed as hydrogen separation membrane material. LDC presents a mixed electronic and protonic conductivity in reducing atmosphere and good stability in moist CO2 environment. LDC separation membranes with asymmetrical structure are fabricated by a cost-saving co-pressing method, using NiO + LDC + corn starch mixture as substrate and LDC as top membrane layer. Hydrogen permeation properties are systemically studied, including the influence of operating temperature, hydrogen partial pressure in feed stream and water vapor in both sides of the membrane on hydrogen permeating fluxes. Hydrogen permeability increases as the increasing of temperature and hydrogen partial pressure in feed gas. Using 20% H2/N2 (with 3% of H2O) as feed gas and dry high purity argon as sweep gas, an acceptable flux of 2.6 × 10−8 mol cm−2 s−1 is achieved at 900 °C. The existing of water in both sides of membrane has significant effect on hydrogen permeation and the corresponding reasons are analyzed and discussed.  相似文献   

15.
An SBA-15/carbon molecular sieve (CMS) composite membrane, using polyetherimide as a precursor and mesoporous silica as filler, was fabricated for hydrogen separation. The effect of mesoporous SBA-15 on the gas transport properties of the composite membrane was evaluated. The permeability and selectivity coefficients of H2, CO2, O2, N2, and CH4 were estimated for the pure CMS and SBA-15/CMS composite membranes at a feed pressure of 2-7 atm for 30 °C. The SBA-15/CMS composite membrane had a gas permeability higher than that of the pure CMS membrane, whereas its selectivity was the same. The permeability was found to be independent of pressure; this indicates that the gases are transported through the membrane by a molecular sieve mechanism. The membranes appeared to have a more microporous structure when the mesoporous silica SBA-15 was incorporated. These results concur with the hypothesis that SBA-15 improves gas diffusivity by increasing pore volume.  相似文献   

16.
Carbon capture from point source emissions has been recognized as one of several strategies necessary for mitigating unfettered release of greenhouse gases (GHGs) into the atmosphere. To keep GHGs at manageable levels, large decreases in CO2 emissions through capturing and separation will be required. This article reviews the possible CO2 capture and separation technologies for end-of-pipe applications. The three main CO2 capture technologies discussed include post-combustion, pre-combustion and oxyfuel combustion techniques. Various separation techniques, such as chemical absorption, physical absorption, physical adsorption, cryogenics, membrane technology, membranes in conjunction with chemical absorption and chemical-looping combustion (CLC) are also thoroughly discussed. Future directions are suggested for application by oil and gas industry. Sequestration methods, such as geological, mineral carbonation techniques, and ocean dump are not covered in this review.  相似文献   

17.
An integrated power generation system combining solid oxide fuel cell (SOFC) and oxy-fuel combustion technology is proposed. The system is revised from a pressurized SOFC-gas turbine hybrid system to capture CO2 almost completely while maintaining high efficiency. The system consists of SOFC, gas turbine, oxy-combustion bottoming cycle, and CO2 capture and compression process. An ion transport membrane (ITM) is used to separate oxygen from the cathode exit air. The fuel cell operates at an elevated pressure to facilitate the use of the ITM, which requires high pressure and temperature. The remaining fuel at the SOFC anode exit is completely burned with oxygen at the oxy-combustor. Almost all of the CO2 generated during the reforming process of the SOFC and at the oxy-fuel combustor is extracted from the condenser of the oxy-combustion cycle. The oxygen-depleted high pressure air from the SOFC cathode expands at the gas turbine. Therefore, the expander of the oxy-combustion cycle and the gas turbine provides additional power output. The two major design variables (steam expander inlet temperature and condenser pressure) of the oxy-fuel combustion system are determined through parametric analysis. There exists an optimal condenser pressure (below atmospheric pressure) in terms of global energy efficiency considering both the system power output and CO2 compression power consumption. It was shown that the integrated system can be designed to have almost equivalent system efficiency as the simple SOFC-gas turbine hybrid system. With the voltage of 0.752 V at the SOFC operating at 900 °C and 8 bar, system efficiency over 69.2% is predicted. Efficiency penalty due to the CO2 capture and compression up to 150 bar is around 6.1%.  相似文献   

18.
A new oxy-fuel H2 generation process with CO2 avoidance is provided. The process utilizes mass recirculation of CO and H2O to the oxyforming reactor. A comparison between non-recirculating and mass-recirculating oxyforming reactor operation is given. Main benefits of mass recirculation are emphasized. The oxyforming reactor is integrated with the H2 and CO2 separators, fuel cell and O2 generator. In the process C/O is equal to 0.5 while C/H determines the temperature level in the reactor. The reaction system includes combustion, steam reforming and water–gas shift reactions. The oxyforming process is found to be mass transport controlled with O2 as the limiting reactant. It is emphasized that under MR conditions the decomposition of H2/CO2 by water–gas shift reaction is suppressed by means of CO/H2O-enrichment and hence MR conditions allow for higher temperatures beneficial to endothermic steam reforming reaction. Under MR conditions the thermodynamic equilibrium limits are overcome and all reactions are forced to proceed to the completion which enables 100% selectivities to H2 and CO2. The effects of operation parameters such as temperature, flow rate, pressure and composition are examined. The derived S-terms enable for the concise interpretation of the effect of pressure on the concentration gradients transverse to the flow. The consistent control algorithm of the oxyforming reactor is provided.  相似文献   

19.
This paper presents results of thermodynamic analysis and experimental evaluation of hydrogen production by steam reforming of ethanol (SRE) combined with CO2 absorption using a mixture of a solid absorbent (CaO, CaO*MgO and Na2ZrO3) and a Ni/Al2O3 catalyst. Thermodynamic analysis results indicate that a maximum of 69.5% H2 (dry basis) is feasible at 1 atm, H2O/C2H5OH = 6 (molar ratio) and T = 600 °C. whereas, the addition of a CO2 absorbent at 1 atm, T = 600 °C and H2O/C2H5OH/Absorbent = 6:1:2.5, produced a H2 concentration of 96.6, 94.1, and 92.2% using CaO, CaO*MgO, and Na2ZrO3, respectively. SRE experimental evaluation achieved a maximum of 60% H2. While combining SRE and a CO2 absorbent exhibited a concentration of 96, 94, and 90% employing CaO, CaO*MgO, and Na2ZrO3, respectively at 1 atm, T = 600 °C, SV = 414 h−1 and H2O/C2H5OH/absorbent = 6:1:2.5 (molar ratio).  相似文献   

20.
CO2 capture and storage (CCS) has received significant attention recently and is recognized as an important option for reducing CO2 emissions from fossil fuel combustion. A particularly promising option involves the use of dry alkali metal-based sorbents to capture CO2 from flue gas. Here, alkali metal carbonates are used to capture CO2 in the presence of H2O to form either sodium or potassium bicarbonate at temperatures below 100 °C. A moderate temperature swing of 120–200 °C then causes the bicarbonate to decompose and release a mixture of CO2/H2O that can be converted into a “sequestration-ready” CO2 stream by condensing the steam. This process can be readily used for retrofitting existing facilities and easily integrated with new power generation facilities. It is ideally suited for coal-fired power plants incorporating wet flue gas desulfurization, due to the associated cooling and saturation of the flue gas. It is expected to be both cost effective and energy efficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号