共查询到20条相似文献,搜索用时 78 毫秒
1.
基于核规范变量分析的非线性故障诊断方法 总被引:1,自引:1,他引:0
提出一种基于核规范变量分析(KCVA)的非线性过程故障诊断方法.该方法使用核函数完成非线性空间到高维线性空间的映射,避免了高维空间中的数据处理和非线性映射函数的使用.在线性空间中使用规范变量分析(CVA)来辨识状态空闻模型,从数据中提取状态信息.3个监测量(Tr^2,Ts^2,Q)用来进行故障检测,同时使用贡献图分离故障变量,并判断故障原因.在CSTR系统上的仿真结果表明,KCVA方法比主元分析法(PCA)和CVA方法能更灵敏地检测到故障的发生,更有效地监控过程变化. 相似文献
2.
化工生产过程往往含有大量的过程变量,且过程多处于闭环控制作用下,产生的测量数据常常存在互相关和自相关。规范变量分析(CVA)通过最大化两个变量集间的相关度,实现对高维数据的降维,并得到一组最大限度地解释变量集中信息的规范变量,很好地解决了上述问题。本文介绍一种基于CVA的过程监控方法,并将此方法应用于一实际化工单元的过程监控,利用控制图,及时准确地检测到过程故障,表明了基于CVA的监控方法的有效性。 相似文献
3.
4.
针对工业过程的建模数据中含有离群点的情况,提出一种基于鲁棒规范变量分析(CVA)的故障诊断方法.该方法使用相关系数的鲁棒估计代替传统的相关系数,通过基于粒子群算法的投影寻踪技术计算最大化鲁棒相关系数的规范变量,从而建立统计模型并监控统计量检测过程的变化.连续搅拌反应器(CSTR)系统的仿真结果说明,鲁棒规范变量分析方法能在含离群点数据的基础上建立准确的统计模型,比规范变量分析更有效地监控过程变化. 相似文献
5.
概率神经网络(PNN)-径向基网络的重要变形,它的学习速发快,很适合于故障检测问题,但是当网络输入样本过大时,网络的计算就会很复杂,计算速度就会很缓慢.本文提出用主元分析(PCA)对过程数据进行降维,然后将处理过的数据作为网络输入,这样使网络的计算速度得到了提高.最后将提出的方法用于田纳西伊斯曼过程(Tennessee... 相似文献
6.
7.
由于多模过程中各模式间的均值和协方差发生了改变,多变量单模高斯分布的基本假设不再成立.基于递推方法的多模过程软传感器建模存在两点问题:其一,递推建模方法不能及时的跟踪多模过程的改变;其二,递推建模方法的在线计算负荷非常高.为了解决上述问题,本文提出了一种基于自适应高效递推规范变量分析的多模过程软传感器建模方法.首先,采用指数权重滑动平均来更新过去观测矢量的协方差矩阵;然后,利用基于模型输出误差范数的可变遗忘因子来跟踪多模过程的动态变化;最后,通过引入一阶干扰理论(firstorder perturbation,FOP)来实现递推奇异值分解,与常规奇异值分解相比递推奇异值算法的计算负荷显著降低.将提出的方法用于田纳西伊斯曼(tennessee eastman,TE)化工过程进行仿真验证,其结果表明了该方法的可行性和精确性. 相似文献
8.
针对化工连续生产过程的时序性及非线性等特征,文章提出了一种基于KISOMAP-LDA-KNN的非线性故障辨识方法。首先采用核等距映射(KISOMAP)算法在保持训练数据内在几何结构下进行非线性降维,然后使用线性判别(LDA)算法保持数据的最佳分类效果下进行降维,完成过程的特征提取,最后用K近邻(KNN)算法进行模式分类。将上述方法应用到TE过程,仿真结果验证了该故障诊断方法有较高的辨识能力。 相似文献
9.
自动扶梯是地铁车站内必不可少的大型公共交通设备,一旦发生故障,小则影响运营,大则引发安全事故;梯级作为自动扶梯的重要结构部位,其固定螺栓松动必然会导致自动扶梯运行异常;针对梯级振动信号故障特征难以提取的问题,提出了变分模态分解(VMD)和高阶统计量(HOS)联合来对自动扶梯故障特征提取;该方法首先对原始振动信号进行VMD分解,得到K个固有模态分量(IMF);然后对主IMF分量进行奇异值分解(SVD)降噪,对去噪后的主IMF分量进行重构得到新的信号;最后通过高阶统计量对新的信号故障特征提取,并利用随机森林分类算法对三类不同的振动信号样本进行分类识别,确定梯级振动故障类型;实验结果表明,该方法可以有效地提取故障特征,实现故障诊断与分类。 相似文献
10.
近年来,过程工业安全事故频发,这使得加强生产过程安全保障变得迫在眉睫,而对于过程故障的监测、诊断是有效规避故障产生严重后果的一个有效方法。本文提出了一种基于核主成分分析(KPCA)的半定量符号有向图(SDG)故障诊断方法。此方法运用KPCA对过程进行异常检测,当找到异常过程变量后,通过引入相对偏移率和分类诊断对传统SDG进行改进,从而得到故障的完整传播路径,为故障诊断以及后续的故障处理提供了有效的指导。通过在TE过程中的仿真验证,结果表明,本方法诊断效率高,精确度高,为保证生产安全运行,提高产品质量提供了新途径。 相似文献
11.
主元分析(PCA)是一种能够对过程生产进行监测和质量控制的有效方法,在保证数据信息丢失最少的情况下,大大降低了原始数据空间的维数。为了更好地进行故障检测与诊断,介绍了基于PCA多变量统计的故障检测与诊断,给出了广泛应用在多变量统计过程上的T2和Q(或SPE)统计量。利用PCA分析建模可以消除变量间的非线性关联,降低噪声影响。用田纳西-伊斯曼过程TEP(Tennessee-Eastman Process)平台产生仿真数据,并利用Matlab软件建立故障检测与诊断模型。通过T2和Q(或SPE)统计量与其阈值的判断,进行对系统的故障检测与诊断。实验表明,基于PCA的故障诊断方法能够对过程的非正常变化做出反应,也能较正确地找出发生故障的原因以及相应环节。 相似文献
12.
13.
为了提高故障诊断性能, 本文对故障特征随时间发展变化的多样性进行了探讨分析. 本文揭示了故障过程呈现时变特性, 即故障过程在不同时段反映出不同的变量相关性, 提出了一种故障时段划分算法. 该算法将故障划分为不同时段, 在每一个时段中, 故障特征被认为是基本类似的. 在此基础上, 针对不同时段建立了不同的故障分解模型, 并揭示了不同故障状态与正常状态的关系. 通过划分不同故障特征, 可以区分不同的故障特征, 建立更精确的重构模型. 该方法很好地阐述了故障的演变行为特征, 能够更精确地进行故障重构从而确定故障原因. 通过在田纳西伊士曼仿真过程上的应用验证了该方法的可行性及诊断性能. 相似文献
14.
针对水泥烧成系统过程变量繁多、变量间静态关系耦合强等特点,采用因子分析方法建立静态过程监控模型。针对系统时序相关问题,结合经典动态主元分析DPCA方法和典型变量分析CVA方法,提出典型变量动态主元分析CVDPCA过程监控方法,有效解决了DPCA方法扩展后的数据矩阵维度大等不足之处。将算法用于水泥烧成系统故障检测,结果表明该算法能准确识别故障和更早检测到微小渐变故障。将CVA和DPCA算法相结合,可以同时监控动态过程和静态关系,且不需要大量的故障数据建立故障模型池,具有一定研究价值。 相似文献
15.
当缺乏故障诊断先验知识时,故障树法是工程上易于实现的一种有效的故障诊断方法.通过分析、归纳测试项目与SRU的关联关系,得出了故障树模型中故障诊断知识的表达方式.以Access数据库为基础,提出了故障树的结构、数据组织形式及故障诊断的推理方法,并设计了适用于自动测试系统的故障诊断系统.该方法具有故障诊断推理过程表达明确、树模型易于建立等优点,已应用到两型机载电子设备的故障诊断中,故障隔离率和虚警率都达到了设计要求. 相似文献
16.
针对动态主元分析方法中残差自相关性降低过程故障检测率问题,提出基于动态主元分析残差互异度的故障检测与诊断方法.首先,应用动态主元分析(Dynamic principal component analysis,DPCA)计算动态过程数据的残差得分;接下来,应用滑动窗口技术并结合互异度指标(Dissimilarity)来监控过程残差得分状态;最后,利用基于变量贡献图的方法进行过程故障诊断分析.本文方法通过DPCA捕获过程的动态特征,同时互异度指标区别于传统的平方预测误差(Square prediction error,SPE),它可以有效地对具有自相关性的残差得分进行过程状态监控.通过一个数值例子和Tennessee Eastman(TE)过程的仿真实验并与传统方法对比分析,仿真结果进一步证实了本文方法的有效性. 相似文献
17.
针对动态主元分析方法中残差自相关性降低过程故障检测率问题,提出基于动态主元分析残差互异度的故障检测与诊断方法.首先,应用动态主元分析(Dynamic principal component analysis,DPCA)计算动态过程数据的残差得分;接下来,应用滑动窗口技术并结合互异度指标(Dissimilarity)来监控过程残差得分状态;最后,利用基于变量贡献图的方法进行过程故障诊断分析.本文方法通过DPCA捕获过程的动态特征,同时互异度指标区别于传统的平方预测误差(Square prediction error,SPE),它可以有效地对具有自相关性的残差得分进行过程状态监控.通过一个数值例子和Tennessee Eastman(TE)过程的仿真实验并与传统方法对比分析,仿真结果进一步证实了本文方法的有效性. 相似文献
18.
19.
20.
随着磁导航AGV系统在制造业和物流业的广泛应用,为了保证其正常工作,针对磁导航AGV系统的故障部位,利用故障树分析法建立了故障树,并进行了故障分析。实践证明,该方法简单实用,有助于提高故障诊断的效率和准确性。 相似文献