首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A Monte Carlo simulation study of La2/3Ca1/3MnO3/La1/3Ca2/3MnO3 bilayers exchange bias (EB) properties by using a classical Heisenberg model and Monte Carlo method with Metropolis algorithm is addressed. Samples were built atom-by-atom in order to resemble the real roughness. In this model, several contributions included nearest neighbors exchange interactions; two different interface couplings, magnetocrystalline anisotropy and Zeeman term, were considered. Here, an influence of the relaxation steps on the interface roughness is present. Our study focuses on the influence of interface roughness on hysteresis loops, particularly EB field (H ex) and coercive force (H c). Results reveal that H ex and H c decrease as the interface roughness increases.  相似文献   

2.
This investigation is interested in studying the relation between magnetocaloric effect and transport properties i La0.8Ca0.2MnO3 manganite compound. The value of the magnetocaloric effect has been determined from the calculation of magnetization as a function of temperature under different external magnetic fields. This study also provides an alternative method to determine the magnetocaloric properties such as magnetic entropy change and heat capacity change on the basis of M(T, H) measurements. On the other hand, based on magnetic and resistivity measurements, the magnetocaloric properties of this compound were investigated using an equation of the form \({\Delta } S \,=\, - \alpha {\int \limits _{0}^{H}} {\left [ {\frac {\delta Ln\left (\rho \right )}{\delta T}} \right ]}_{H} dH\), which relates magnetic order to transport behavior of the compounds. As an important result, the values of MCE and the results of calculation are in good agreement with the experimental ones, which indicates the strong correlation between the electric and magnetic properties in manganites.  相似文献   

3.
The effects of Ba 2+ doping on the electrical and magnetic properties of charge-ordered Pr0.6Ca0.4MnO3 were investigated through electrical resistivity and AC susceptibility measurements. X-ray diffraction data analysis showed an increase in unit cell volume with increasing Ba 2+ content indicating the possibility of substituting Ba 2+ for the Ca-site. Electrical resistivity measurements showed insulating behavior and a resistivity anomaly at around 220 K. This anomaly is attributed to the existence of charge ordering transition temperature, \(T^{\mathrm {R}}_{\text {CO}}\) for the x = 0 sample. The Ba-substituted samples exhibited metallic to insulator transition (MI) behavior, with transition temperature, T MI, increasing from ~98 K (x = 0.1) to ~122 K (x = 0.3). AC susceptibility measurements showed ferromagnetic to paramagnetic (FM-PM) transition for Ba-substituted samples with FM-PM transition temperature, T c, increasing from ~121 K (x = 0.1) to ~170 K (x = 0.3), while for x = 0, an antiferromagnetic to paramagnetic transition behavior with transition temperature, T N, ~170 K was observed. In addition, inverse susceptibility versus T plot showed a deviation from the Curie–Weiss behavior above T c, indicating the existence of the Griffiths phase with deviation temperature, T G, increasing from 160 K (x = 0.1) to 206 K (x = 0.3). Magnetoresistance, MR, behavior indicates intrinsic MR mechanism for x = 0.1 which changed to extrinsic MR for x > 0.2 as a result of Ba substitution. The weakening of charge ordering and inducement of ferromagnetic metallic (FMM) state as well as increase in both T c and T MI are suggested to be related to the increase of tolerance factor, τ, and increase of e g ?electron bandwidth as average ionic radius at A-site, <r A> increased with Ba substitution. The substitution may have reduced MnO6 octahedral distortion and changed the Mn–O–Mn angle which, in turn, promotes itinerancy of charge carrier and enhanced double exchange mechanism. On the other hand, increase in A-site disorder, which is indicated by the increase in σ 2 is suggested to be responsible for the widening of the difference between T c and T MI.  相似文献   

4.
The physical properties of the La0.6Y0.1Ca0.3MnO3 compound have been investigated, focusing on the magnetoresistance phenomenon studied by both dc and ac electrical transport measurements. X-ray diffraction and scanning electron microscopy analysis of ceramic samples prepared by the sol–gel method revealed that specimens are single phase and have average grain size of ∼0.5 μm. Magnetization and 4-probe dc electrical resistivity ρ(T,H) experiments showed that a ferromagnetic transition at T C ∼ 170 K is closely related to a metal-insulator (MI) transition occurring at essentially the same temperature T MI . The magnetoresistance effect was found to be more pronounced at low applied fields (H ≤ 2.5 T) and temperatures close to the MI transition. The ac electrical transport was investigated by impedance spectroscopy Z(f,T,H) under applied magnetic field H up to 1 T. The Z(f,T,H) data exhibited two well-defined relaxation processes that exhibit different behaviors depending on the temperature and applied magnetic field. Pronounced effects were observed close to T C and were associated with the coexistence of clusters with different electronic and magnetic properties. In addition, the appreciable decrease of the electrical permittivity ε′(T,H) is consistent with changes in the concentration of e g mobile holes, a feature much more pronounced close to T C .  相似文献   

5.
We have inspected the magnetic properties of polycrystalline La0.4Bi0.1Ca0.5MnO3 using electron spin resonance (ESR) in the temperature range 150–280 K. The temperature dependence of magnetization indicates that the Curie temperature is T C= 225 K. ESR spectra revealed that the sample is not completely paramagnetic above its Curie temperature through the presence of ferromagnetic interactions in the temperature range 225–270 K which can be attributed to the presence of Griffiths phase in this temperature range. The sample becomes completely paramagnetic above 270 K. The presence of Griffiths phase can be attributed to the disorder induced by the 6 s 2 lone pair electrons of Bi3+ ions.  相似文献   

6.
A systematic investigation of photoinduced properties is carried out in La0.67Ca0.33MnO3 film prepared on LaAlO3 (100) substrate by magnetron sputtering method. At T < 270 K, the resistivity of film induced by laser increases because of the demagnetization effect of manganites. The photoinduced relaxation character of film indicates that the time constant increases with increasing temperature, which is attributed to the growing thermal fluctuation. After laser irradiation, the resistivity returns to the original value and the relaxation time seems to be independent of temperature. In insulating state, laser irradiation induces the reduction in resistivity of film due to the excitation of small polarons.  相似文献   

7.
Epitaxial trilayer heterostructures of the type La0.67Ca0.33MnO3/SrTiO3/La0.67Ca0.33MnO3 were grown by laser ablation on (001)[(LaAlO3)0.3+(Sr2AlTaO6)0.7] substrates. The real part of the dielectric permittivity ε and the loss factor tan δ of a 1100-nm-thick SrTiO3 interlayer were studied in the temperature interval T=4.2–300 K in a nonbiased state and at a bias voltage of ±2.5 V applied to the manganite electrodes. Using the temperature dependence ε(T) measured for the SrTiO3 layer grown between the manganite electrodes, we have estimated the capacitance of La0.67Ca0.33MnO3/SrTiO3 interfaces (C1≈2 μF/cm2) related to the electric field penetrating from the interlayer into La0.67Ca0.33MnO3.  相似文献   

8.
The La0.78Dy0.02Ca0.2MnO3 (LDCMO) compound prepared via high-energy ball-milling (BM) presents a ferromagnetic-to-paramagnetic transition (FM-PM) and undergoes a second-order phase transition (SOFT). Based on a phenomenological model, magnetocaloric properties of the LDCMO compound have been studied. Thanks to this model, we can predict the values of the magnetic entropy change ΔS, the full width at half-maximum δ T FWHM, the relative cooling power (RCP), and the magnetic specific heat change ΔC p for our compound. The significant results under 2 T indicate that our compound could be considered as a candidate for use in magnetic refrigeration at low temperatures. In order to further understand the FM-PM transition, the associated critical behavior has been investigated by magnetization isotherms. The critical exponents estimated by the modified Arrott plot, the Kouvel–Fisher plot, and the critical isotherm technique are very close to those corresponding to the 3D-Ising standard model (β = 0.312 ± 0.07, γ = 1.28 ± 0.02, and δ = 4.80).Those results revealed a long-range ferromagnetic interaction between spins.  相似文献   

9.
We report on the growth and magnetic properties of La2/3Sr1/3MnO3/SrTiO3/CoFe2 hard-soft magnetic systems prepared by pulsed laser deposition on SrTiO3(001) substrates. In situ reflection high-energy electron diffraction along the [100]SrTiO3 substrate azimuth and atomic force microscopy measurements reveal that La2/3Sr1/3MnO3 and SrTiO3 grow both in a three dimensional mode and that the roughness of the lower and upper magnetic/non-magnetic interfaces ranges between 2 and 4 Å. Cross-section transmission electron microscopy observations show that the layers are continuous, with an homogeneous thickness, and that the interfaces are mostly sharp and correlated. The magnetization curves show a two step reversal of the magnetization, with very distinct coercive fields. A small anisotropy is observed for the CoFe2 layer with an in plane easy magnetization axis along the [110]SrTiO3 direction. Minor magnetization loops indicate that the coupling between the magnetic layers is negligible.  相似文献   

10.
Calcium-substituted lanthanum manganite compounds were synthesized by the spray drying technique. This method—whose main advantages are versatility, high reproducibility and scalability—yields small grain materials of high homogeneity and displaying low-field magnetoresistance effects. We report about the physical and chemical characterizations of these samples in order to investigate the potential interest of spray drying for the production of materials for low-field magnetoresistance applications. We have studied the dependence of the low-field magnetoresistance on the temperature and duration of the thermal treatment applied to the pelletized powders. The issue of the shape anisotropy (demagnetisation effects) influence on the magnetoresistance properties has also been dealt with.  相似文献   

11.
We have studied the structure and the electro-and magnetotransport properties of 25-nm-thick epitaxial La0.67Ca0.33MnO3 (LCMO) films mechanically strained during nucleation and growth on (001)-oriented LaAlO3 substrates. The unit cell parameters of such LCMO films measured parallel and perpendicular to the substrate plane are significantly different (a = 3.790 Å, a = 3.948 Å). The magnetocrystalline anisotropy and phase separation induced by the unit cell distortion in the film lead to the appearance of clearly pronounced hysteresis loops on the plots of electric resistance versus magnetic field.  相似文献   

12.
The lateral unit cell parameter in nanodimensional La0.67Ca0.33MnO3 (LCMO) films grown on (001)-oriented LaAlO3 substrates is significantly (approximately 4%) smaller than the value measured along the normal to the substrate plane. At T < 140 K, the temperature dependence of the resistivity ρ of LCMO films follows the relation ρ − ρ (T = 4.2 K) ≈ρ2(H)T 4.5, where ρ2 is independent of the temperature but decreases with increasing magnetic field H. It is shown that this decrease is related both to a decay of the spin waves in ferromagnetic domains and to the transformation of antiferromagnetic phase inclusions into ferromagnetic ones.  相似文献   

13.
Two-layer epitaxial heterostructures (30 nm)La0.67Ca0.33MnO3/(30 nm)La0.67Ba0.33MnO3 (LCMO/LBMO) have been grown by laser deposition on single crystal (001)LaAlO3 (LAO) substrates. In this system, the upper (LCMO) layer occurs under the action of tensile stresses in the substrate plane, whereas the lower (LBMO) layer exhibits biaxial compression. The formation of a 30-nm-thick LCMO film on the surface of the 30-nm-thick LBMO layer leads to an increase in the level of mechanical stresses in the latter layer. The maximum electric resistivity ρ of the (30 nm)LCMO/(30 nm)LBMO/LAO structure was observed at a temperature 25–30 K below that corresponding to the maximum of the ρ(T) curve for a single (30 nm)LBMO film on the same LAO substrate.  相似文献   

14.
We present an extensive study of the magnetic properties of a novel La0.5Ba0.5MnO3 perovskite material prepared by the hydrothermal method. The explored sample was structurally studied by the x-ray diffraction (XRD) method which confirms the formation of a pure cubic phase of a perovskite structure with Pm3m space group. The magnetic properties were probed by employing temperature M (T) and external magnetic field M (μoH) dependence of magnetization measurements. A magnetic phase transition from ferromagnetic to paramagnetic phase occurs at 339 K in this sample. The maximum magnetic entropy change (\(\left | {{\Delta } S}_{M}^{\max } \right |\)) took a value of 1.4 J kg??1 K??1 at the applied magnetic field of 4.0 T for the explored sample and has also been found to occur at Curie temperature (TC). This large entropy change might be instigated from the abrupt reduction of magnetization at TC. The magnetocaloric effect (MCE) is maximum at TC as represented by M (μoH) isotherms. The relative cooling power (RCP) is 243.2 J kg??1 at μoH =?4.0 T. Moreover, the critical properties near TC have been probed from magnetic data. The critical exponents δ, β, and γ with values 3.82, 0.42, and 1.2 are close to the values predicted by the 3D Ising model. Additionally, the authenticity of the critical exponents has been confirmed by the scaling equation of state and all data fall on two separate branches, one for T < TC and the other for T > TC, signifying that the critical exponents obtained in this work are accurate.  相似文献   

15.
We have studied the electric resistance of 20-nm-thick La0.67Ca0.33MnO3 films coherently grown on single crystal substrates with considerable (negative) and almost zero lattice mismatch. The unit cell volume in the growing film depends on the substrate lattice parameter. At T<200 K and μ0H=0, the resistance of manganite films on (001)LaAlO3 substrates was several orders of magnitude greater than the value for an analogous film grown on (001)La0.29Sr0.71Al0.65Ta0.35O3. The observed decrease in resistance of the elastically strained (biaxial compression) manganite films is related to a superstoichiometric (≈45%) relative concentration of Mn4+ ions in the film volume.  相似文献   

16.
We have studied the structure and magnetoresistance of 40-nm-thick epitaxial La0.67Ca0.33MnO3 (LCMO) films grown by laser deposition on (001)-oriented NdGaO3 (NGO) substrates. The manganite layers were oriented so that the b axis was perpendicular to the substrate plane and occurred under the action of inhomogeneous biaxial mechanical stresses. The negative magnetoresistance of the LCMO films in the vicinity of the ferromagnetic spin ordering was about 71% (μ0 H = 1 T). The observed azimuthal anisotropy of the magnetotransport properties of 40-nm-thick LCMO/(001)NGO films can be explained within the framework of a model of anisotropic magnetoresistance taking into account the presence of the preferred orientation of the spontaneous magnetization.  相似文献   

17.
A novel boned perovskite manganese oxide magnetoresistant material was prepared using La0.7Sr0.3MnO3 (LSMO) as the precursor powders and metal tin (Sn) as the binder. The microstructure and phase characteristics, low-field transport properties were studied. Sn segregated at the grain boundaries of LSMO grains. The insulator–metal (IM) transition and enhanced LFMR are only observed with a low content of Sn, due to grain boundary disorder and spin polarized tunneling between grain boundaries. The Sn addition induced resistivity decreasing dramatically. In the high temperature PM region, the resistivities for samples with low Sn content follow the adiabatic small-polaron-hopping model.  相似文献   

18.
We have studied the structure, electric resistance, and magnetoresistance of 30-nm-thick (110)La0.67Ca0.33MnO3 (LCMO) films grown by laser deposition on (001)-oriented LaAlO3 substrates. The unit cell parameters a and b (along the [100] and [010]LCMO axes, respectively) of these manganite films are significantly (by ∼1.2%) increased as compared to the corresponding values in the pseudocubic unit cell of bulk stoichiometric LCMO crystals. At T < 150 K, the temperature dependence of the resistivity of LCMO films is well described by the relation ρ = ρ1 + ρ2 (H) T 4.5. The value of ρ 2 decreases with increasing magnetic field and is close to the analogous coefficient for manganite films grown on substrates with small lattice misfit.  相似文献   

19.
In this work, we studied in detail the magnetic and magnetocaloric properties of the La0.7Ca0.2Ba0.1MnO3 compound according to the phenomenological model. Based on this model, the magnetocaloric parameters such as the maximum of the magnetic entropy change ΔS M and the relative cooling power (RCP) have been determined from the magnetization data as a function of temperature at several magnetic fields. The theoretical predictions are found to closely agree with the experimental measurements, which make our sample a suitable candidate for refrigeration near room temperature. In addition, field dependences of \({{\Delta } S}_{\mathrm {M}}^{\max }\) and RCP can be expressed by the power laws \({\Delta S}_{\mathrm {M}}^{\max }\approx a\)(μ 0 H) n and RCP ≈b(μ 0 H) m , where a and b are coefficients and n and m are the field exponents, respectively. Moreover, phenomenological universal curves of entropy change confirm the second-order phase transition.  相似文献   

20.
It is established that the magnetic state of the anion-deficient La0.70Sr0.30MnO2.85 manganite represents the spin-glass state of the cluster. The magnetic field at the beginning (H < 10 kOe) leads to the fragmentation of ferromagnetic clusters, then (H > 10 kOe) leads to the transition to a ferromagnetic state of an antiferromagnetic matrix and to increase in the degree of polarization of local spins of manganese. It is determined that the freezing temperature of magnetic moments varies as T f = 65 − 6H 0.21. The causes and mechanism of the magnetic phase separation are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号