首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Park I  Li Z  Pisano AP  Williams RS 《Nano letters》2007,7(10):3106-3111
In this letter, we report a novel approach to selectively functionalize the surface of silicon nanowires located on silicon-based substrates. This method is based upon highly localized nanoscale Joule heating along silicon nanowires under an applied electrical bias. Numerical simulation shows that a high-temperature (>800 K) with a large thermal gradient can be achieved by applying an appropriate electrical bias across silicon nanowires. This localized heating effect can be utilized to selectively ablate a protective polymer layer from a region of the chosen silicon nanowire. The exposed surface, with proper postprocessing, becomes available for surface functionalization with chemical linker molecules, such as 3-mercaptopropyltrimethoxysilanes, while the surrounding area is still protected by the chemically inert polymer layer. This approach is successfully demonstrated on silicon nanowire arrays fabricated on SOI wafers and visualized by selective attachment of gold nanoparticles.  相似文献   

2.
Jiang Z  Qing Q  Xie P  Gao R  Lieber CM 《Nano letters》2012,12(3):1711-1716
Semiconductor nanowires and other semiconducting nanoscale materials configured as field-effect transistors have been studied extensively as biological/chemical (bio/chem) sensors. These nanomaterials have demonstrated high-sensitivity from one- and two-dimensional sensors, although the realization of the ultimate pointlike detector has not been achieved. In this regard, nanoscale p-n diodes are attractive since the device element is naturally localized near the junction, and while nanowire p-n diodes have been widely studied as photovoltaic devices, their applications as bio/chem sensors have not been explored. Here we demonstrate that p-n diode devices can serve as a new and powerful family of highly localized biosensor probes. Designed nanoscale axial p-n junctions were synthetically introduced at the joints of kinked silicon nanowires. Scanning electron microscopy images showed that the kinked nanowire structures were achieved, and electrical transport measurements exhibited rectifying behavior with well-defined turn-on in forward bias as expected for a p-n diode. In addition, scanning gate microscopy demonstrated that the most sensitive region of these nanowires was localized near the kinked region at the p-n junction. High spatial resolution sensing using these p-n diode probes was carried out in aqueous solution using fluorescent charged polystyrene nanobeads. Multiplexed electrical measurements show well-defined single-nanoparticle detection, and experiments with simultaneous confocal imaging correlate directly the motion of the nanobeads with the electrical signals recorded from the p-n devices. In addition, kinked p-n junction nanowires configured as three-dimensional probes demonstrate the capability of intracellular recording of action potentials from electrogenic cells. These p-n junction kinked nanowire devices, which represent a new way of constructing nanoscale probes with highly localized sensing regions, provide substantial opportunity in areas ranging from bio/chem sensing and nanoscale photon detection to three-dimensional recording from within living cells and tissue.  相似文献   

3.
Self-limited plasmonic welding of silver nanowire junctions   总被引:1,自引:0,他引:1  
Nanoscience provides many strategies to construct high-performance materials and devices, including solar cells, thermoelectrics, sensors, transistors, and transparent electrodes. Bottom-up fabrication facilitates large-scale chemical synthesis without the need for patterning and etching processes that waste material and create surface defects. However, assembly and contacting procedures still require further development. Here, we demonstrate a light-induced plasmonic nanowelding technique to assemble metallic nanowires into large interconnected networks. The small gaps that form naturally at nanowire junctions enable effective light concentration and heating at the point where the wires need to be joined together. The extreme sensitivity of the heating efficiency on the junction geometry causes the welding process to self-limit when a physical connection between the wires is made. The localized nature of the heating prevents damage to low-thermal-budget substrates such as plastics and polymer solar cells. This work opens new avenues to control light, heat and mass transport at the?nanoscale.  相似文献   

4.
Spatial arrangement of 1D nanomaterials may offer enormous opportunities for advanced electronics and photonics. Moreover, morphological complexity and chemical diversity in the nanoscale components may lead to unique properties that are hardly anticipated in randomly distributed homogeneous nanostructures. Here, controlled chemical segmentation of metal nanowire arrays using block copolymer lithography and subsequent reversible metal ion loading are demonstrated. To impose chemical heterogeneity in the nanowires generated by block copolymer lithography, reversible ion loading method highly specific for one particular polymer block is introduced. Reversibility of the metal ion loading enables area‐selective localized replacement of metal ions in the self‐assembled patterns and creates segmented metal nanowire arrays with different metallic components. Further integration of this method with shear aligning process produces high aligned segmented metal nanowire array with desired local chemical compositions.  相似文献   

5.
Ferromagnetic nanowires are finding use as untethered sensors and actuators for probing micro‐ and nanoscale biophysical phenomena, such as for localized sensing and application of forces and torques on biological samples, for tissue heating through magnetic hyperthermia, and for microrheology. Quantifying the magnetic properties of individual isolated nanowires is crucial for such applications. Dynamic cantilever magnetometry is used to measure the magnetic properties of individual sub‐500 nm diameter polycrystalline nanowires of Ni and Ni80Co20 fabricated by template‐assisted electrochemical deposition. The values are compared with bulk, ensemble measurements when the nanowires are still embedded within their growth matrix. It is found that single‐particle and ensemble measurements of nanowires yield significantly different results that reflect inter‐nanowire interactions and chemical modifications of the sample during the release process from the growth matrix. The results highlight the importance of performing single‐particle characterization for objects that will be used as individual magnetic nanoactuators or nanosensors in biomedical applications.  相似文献   

6.
A fluorescent erbium/ytterbium co-doped fluoride nanocrystal glued at the end of a sharp atomic force microscope tungsten tip was used as a nanoscale thermometer. The thermally induced fluorescence quenching enabled observation of the heating and measurement of the temperature distribution in a Joule-heated 80 nm wide and 2 μm long titanium nanowire fabricated on an oxidized silicon substrate. The measurements have been carried out in an alternating heating mode by applying a modulated current on the device at low frequency. The heating is found to be inhomogeneous along the wire, and the temperature in its center increases quadratically with the applied current. Heat appears to be confined mainly along the wire, with weak lateral diffusion along the substrate and in the lateral metallic pads. The lateral resolution of this thermal measurement technique is better than 250 nm. It could also be used to study thermally induced defects in nanodevices.  相似文献   

7.
We show that when a small amount of heat is added close to a liquid-vapor interface of a captive gas bubble in a microchannel, interphase mass-transfer through the bubble can occur in a controlled manner with only a slight change in the temperature of the fluid. We demonstrate that this method, which we refer to as bubble-assisted interphase mass-transfer (BAIM), can be applied to interphase chemical separations, e.g., simple distillation, without the need for high temperatures, vacuum, or active cooling. Although any source of localized heating could be used, we illustrate BAIM with an all-optical technique that makes use of the plasmon resonance in an array of nanoscale metal structures that are incorporated into the channel to produce localized heating of the fluid when illuminated by a stationary low-power laser.  相似文献   

8.
Wu Z  Zhang YW  Jhon MH  Gao H  Srolovitz DJ 《Nano letters》2012,12(2):910-914
Experimental studies of the tensile behavior of metallic nanowires show a wide range of failure modes, ranging from ductile necking to brittle/localized shear failure-often in the same diameter wires. We performed large-scale molecular dynamics simulations of copper nanowires with a range of nanowire lengths and provide unequivocal evidence for a transition in nanowire failure mode with change in nanowire length. Short nanowires fail via a ductile mode with serrated stress-strain curves, while long wires exhibit extreme shear localization and abrupt failure. We developed a simple model for predicting the critical nanowire length for this failure mode transition and showed that it is in excellent agreement with both the simulation results and the extant experimental data. The present results provide a new paradigm for the design of nanoscale mechanical systems that demarcates graceful and catastrophic failure.  相似文献   

9.
Thermal response behavior of transparent silver nanowire/PEDOT:PSS film heaters are intensively studied for manipulating heating temperature, response time, and power consumption. Influences of substrate heat capacity, heat transfer coefficient between air and heater, sheet resistance and dimension of Ag nanowire film, on the thermal response are investigated from thermodynamic analysis. Suggestion is given for practical applications that if other parameters are fixed, Ag nanowire coverage can be utilized as an effective parameter to adjust the thermal response. The heat transfer coefficient plays opposite roles on thermal response speed and achievable steady temperature. A value of ≈32 W m?2 K?1 is obtained from transient process analysis after correcting it by considering heater resistance variation during heating tests. Guidance of designing heaters with a given response time is provided by forming Ag nanowire film with a suitable sheet resistance on substrate of appropriate material and a certain thickness. Thermal response tests of designed Ag heaters are performed to show higher heating temperature, shorter response time, and lower power consumption (179 °C cm2 W?1) than ITO/FTO heaters, as well as homogeneous temperature distribution and stability for repeated use. Potential applications of the Ag heaters in window defogging, sensing and thermochromism are manifested.  相似文献   

10.
A new type of nanoscale bioswitch based on the electrical detection of chemically induced cleavage of chemical bonds, which bind individual nanowires across a pair of electrodes is demonstrated. Carbon nanofibers are manipulated using dielectrophoresis to form single-nanowire bridges across microelectrode junctions, and are anchored through a biomolecular interaction. Once in place, chemically induced cleavage of a recognition site along the bonds linking the nanowire to the electrodes allows the nanowire to be easily removed by a flow of fluid; this removal can be detected in real time via changes in the AC electrical response. This form of sensing is inherently digital in nature as the removal of a single nanowire produces a sudden decrease in the current between electrodes and is essentially a chemoselective fuse. These results suggest that this sensing principle could be a general method for digital chemical and/or biological sensing using individual nanowires.  相似文献   

11.
Gated transport measurements are the backbone of electrical characterization of nanoscale electronic devices. Scanning gate microscopy (SGM) is one such gating technique that adds crucial spatial information, accessing the localized properties of semiconductor devices. Nanowires represent a central device concept due to the potential to combine very different materials. However, SGM on semiconductor nanowires has been limited to a resolution in the 50-100 nm range. Here, we present a study by SGM of newly developed III-V semiconductor nanowire InAs/GaSb heterojunction Esaki tunnel diode devices under ultra-high vacuum. Sub-5 nm resolution is demonstrated at room temperature via use of quartz resonator atomic force microscopy sensors, with the capability to resolve InAs nanowire facets, the InAs/GaSb tunnel diode transition and nanoscale defects on the device. We demonstrate that such measurements can rapidly give important insight into the device properties via use of a simplified physical model, without the requirement for extensive calculation of the electrostatics of the system. Interestingly, by precise spatial correlation of the device electrical transport properties and surface structure we show the position and existence of a very abrupt (〈10 nm) electrical transition across the InAs/GaSb junction despite the change in material composition occurring only over 30-50 nm. The direct and simultaneous link between nanostructure composition and electrical properties helps set important limits for the precision in structural control needed to achieve desired device performance.  相似文献   

12.
A method is described to quantify thermal conductance and temperature distributions with nanoscale resolution using scanning thermal microscopy. In the first step, the thermal resistance of the tip-surface contact is measured for each point of a surface. In the second step, the local temperature is determined from the difference between the measured heat flux for heat sources switched on and off. The method is demonstrated using self-heating of silicon nanowires. While a homogeneous nanowire shows a bell-shaped temperature profile, a nanowire diode exhibits a hot spot centered near the junction between two doped segments.  相似文献   

13.
Repair is ubiquitous in biological systems, but rare in the inorganic world. We show that inorganic nanoscale systems can however possess remarkable repair and reconfiguring capabilities when subjected to extreme confinement. Confined crystallization inside single-walled carbon nanotube (SWCNT) templates is known to produce the narrowest inorganic nanowires, but little is known about the potential for repair of such nanowires once crystallized, and what can drive it. Here inorganic nanowires encapsulated within SWCNTs were seen by high-resolution transmission electron microscopy to adjust to changes in their nanotube template through atomic rearrangement at room temperature. These observations highlight nanowire repair processes, supported by theoretical modeling, that are consistent with atomic migration at fractured, ionic ends of the nanowires encouraged by long-range force fields, as well as release-blocking mechanisms where nanowire atoms bind to nanotube walls to stabilize the ruptured nanotube and allow the nanowire to reform. Such principles can inform the design of nanoscale systems with enhanced resilience.   相似文献   

14.
The ability to rationally engineer the growth and nanomanufacturing of one-dimensional nanowires in high volumes has the potential to enable applications of nanoscale materials in a diverse range of fields including energy conversion and storage,catalysis,sensing,medicine,and information technology.This review provides a roadmap for the development of large-scale nanowire processing.While myriad techniques exist for bench-scale nanowire synthesis,these growth strategies typically fall within two major categories:1) anisotropically-catalyzed growth and 2) confined,template-based growth.However,comparisons between growth methods with different mass transport pathways have led to confusion in interpreting observations,in particular Gibbs-Thomson effects.We review mass transport in nanowire synthesis techniques to unify growth models and to allow for direct comparison of observations across different methods.In addition,we discuss the applicability of nanoscale,Gibbs-Thomson effects on mass transport and provide guidelines for the development of new growth models.We explore the scalability of these complex processes with dimensionless numbers and consider the effects of pressure,temperature,and precursor material on nanowire growth.  相似文献   

15.
Nanowire sensors based on variations of their electrical properties show great potential for real-time, in situ monitoring of molecular adsorption and desorption. Although the molecular adsorption-induced change in the electronic work function is very sensitive, it does not have any specificity. However, the temperature dependency of the adsorption-induced work function variation can provide limited selectivity based on the desorption temperature. In this study, we report the in situ probing of molecular desorption by monitoring the work function variations of a single Pt nanowire as a function of temperature. The work function of a clean Pt nanowire shows a significant variation due to vapor adsorption at room temperature. Increasing the temperature of the nanowire results in a variation of the work function due to molecular desorption. Experimentally measured differential work function as a function of temperature shows desorption peaks at 36 and 44 °C for methanol and ethanol molecules respectively. Adsorption-induced variation of the Pt nanowire work function was further confirmed using ultraviolet photoelectron spectroscopy before and after exposure to methanol vapor. These results show that the molecular adsorption/desorption-induced variation of the work function and its temperature dependency can be used for developing nanoscale electro-calorimetric sensors.
  相似文献   

16.
Shin N  Filler MA 《Nano letters》2012,12(6):2865-2870
We report on the first in situ chemical investigation of vapor-liquid-solid semiconductor nanowire growth and reveal the important, and previously unrecognized, role of transient surface chemistry near the triple-phase line. Real-time infrared spectroscopy measurements coupled with postgrowth electron microscopy demonstrate that covalently bonded hydrogen atoms are responsible for the (left angle bracket 111 right angle bracket) to (left angle bracket 112 right angle bracket) growth orientation transition commonly observed during Si nanowire growth. Our findings provide insight into the root cause of this well-known nanowire growth phenomenon and open a new route to rationally engineer the crystal structure of these nanoscale semi-conductors.  相似文献   

17.
We demonstrate the temperature mediated applications of a previously proposed novel localized dielectric heating method on the surface of dual purpose silicon field effect transistor (FET) sensor-heaters and perform modeling and characterization of the underlying mechanisms. The FETs are first shown to operate as electrical sensors via sensitivity to changes in pH in ionic fluids. The same devices are then demonstrated as highly localized heaters via investigation of experimental heating profiles and comparison to simulation results. These results offer further insight into the heating mechanism and help determine the spatial resolution of the technique. Two important biosensor platform applications spanning different temperature ranges are then demonstrated: a localized heat-mediated DNA exchange reaction and a method for dense selective functionalization of probe molecules via the heat catalyzed complete desorption and reattachment of chemical functionalization to the transistor surfaces. Our results show that the use of silicon transistors can be extended beyond electrical switching and field-effect sensing to performing localized temperature controlled chemical reactions on the transistor itself.  相似文献   

18.
One-step direct nanoimprinting of metal nanoparticles was investigated to fabricate nano-/microscale metallic structures such as nanodot and nanowire arrays. This was done at low temperatures and pressures, utilizing the low melting temperature and viscosity of metal nanoparticle solutions. Through precise control of the fluidic properties of the nanoparticle solution and the mold design, high-quality nanoscale features with no or negligible residual layer were nanoimprinted. Nanoscale electronic devices were also demonstrated, including nanowire resistors and nanochannel organic field effect transistors with an air-stable semiconducting polymer.  相似文献   

19.
We demonstrate a new versatile strategy to rapidly heat and cool subdiffraction-limited volumes of material with a focused light beam. The local temperature rise is obtained by exploiting the unique optical properties of metallic nanostructures that facilitate efficient light-to-heat conversion through the excitation of surface plasmons (collective electron oscillations). By locally heating nanoscale metallic catalysts, growth of semiconductor nanowires and carbon nanotubes can be initiated and controlled at arbitrarily prespecified locations and down to the single nanostructure level in a room-temperature chamber. This local heating strategy can be orders of magnitude (>10(5)) more energy efficient than conventional chemical vapor deposition (CVD) tools in which an entire chamber/substrate is heated. For these reasons, it has great potential for use in process- and energy-efficient assembly of nanowires into complementary metal-oxide-semiconductor (CMOS) compatible device architectures. In general, the high degree of spatial and temporal control over nanoscale thermal environments afforded by this method inspires new pathways for manipulating a range of important thermally stimulated processes and the development of novel photothermal devices.  相似文献   

20.
Hybrid polymer‐plasmonic nanostructures might combine high enhancement of localized fields from metal nanoparticles with light confinement and long‐range transport in subwavelength dielectric structures. Here, the complex behavior of fluorophores coupling to Au nanoparticles within polymer nanowires, which features localized metal‐enhanced fluorescence (MEF) with unique characteristics compared to conventional structures, is reported. The intensification effect when the particle is placed in the organic filaments is remarkably higher with respect to thin films of comparable thickness, thus highlighting a specific, nanowire‐related enhancement of MEF effects. A dependence on the confinement volume in the dielectric nanowire is also indicated, with MEF significantly increasing upon reduction of the wire diameter. These findings are rationalized by finite element simulations, predicting a position‐dependent enhancement of the quantum yield of fluorophores embedded in the fibers. Calculation of the ensemble‐averaged fluorescence enhancement unveils the possibility of strongly enhancing the overall emission intensity for structures with size twice the diameter of the embedded metal particles. These new, hybrid fluorescent systems with localized enhanced emission, and the general nanowire‐enhanced MEF effects associated to them, are highly relevant for developing nanoscale light‐emitting devices with high efficiency and intercoupled through nanofiber networks, highly sensitive optical sensors, and novel laser architectures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号