首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemical vapor deposition (CVD) growth of high‐quality graphene has emerged as the most promising technique in terms of its integrated manufacturing. However, there lacks a controllable growth method for producing high‐quality and a large‐quantity graphene films, simultaneously, at a fast growth rate, regardless of roll‐to‐roll (R2R) or batch‐to‐batch (B2B) methods. Here, a stationary‐atmospheric‐pressure CVD (SAPCVD) system based on thermal molecular movement, which enables fast B2B growth of continuous and uniform graphene films on tens of stacked Cu(111) foils, with a growth rate of 1.5 µ m s?1, is demonstrated. The monolayer graphene of batch production is found to nucleate from arrays of well‐aligned domains, and the films possess few defects and exhibit high carrier mobility up to 6944 cm2 V?1 s?1 at room temperature. The results indicate that the SAPCVD system combined with single‐domain Cu(111) substrates makes it possible to realize fast batch‐growth of high‐quality graphene films, which opens up enormous opportunities to use this unique 2D material for industrial device applications.  相似文献   

2.
Understanding of graphene nucleation and growth on a metal substrate in chemical vapor deposition (CVD) process is critical to obtain high-quality single crystal graphene. Here, we report synthesis of individual hexagonal graphene and their large cluster on Cu foil using solid camphor as a carbon precursor in the atmospheric pressure CVD (AP-CVD) process. Optical and scanning electron microscopy studies show formation of hexagonal graphene crystals across the grain, grain boundaries and twin boundaries of polycrystalline Cu foil. Electron backscattered diffraction analysis is carried out before and after the growth to identify Cu grain orientation correlating with the graphene formation. The influence of growth conditions and Cu grain structure is explored on individual hexagonal graphene formation in the camphor-based AP-CVD process.  相似文献   

3.
The fundamental properties of graphene are making it an attractive material for a wide variety of applications. Various techniques have been developed to produce graphene and recently we discovered the synthesis of large area graphene by chemical vapor deposition (CVD) of methane on Cu foils. We also showed that graphene growth on Cu is a surface-mediated process and the films were polycrystalline with domains having an area of tens of square micrometers. In this paper, we report on the effect of growth parameters such as temperature, and methane flow rate and partial pressure on the growth rate, domain size, and surface coverage of graphene as determined by Raman spectroscopy, and transmission and scanning electron microscopy. On the basis of the results, we developed a two-step CVD process to synthesize graphene films with domains having an area of hundreds of square micrometers. Scanning electron microscopy and Raman spectroscopy clearly show an increase in domain size by changing the growth parameters. Transmission electron microscopy further shows that the domains are crystallographically rotated with respect to each other with a range of angles from about 13 to nearly 30°. Electrical transport measurements performed on back-gated FETs show that overall films with larger domains tend to have higher carrier mobility up to about 16,000 cm(2) V(-1) s(-1) at room temperature.  相似文献   

4.
Chemical vapor deposition (CVD) is considered to be an efficient method for fabricating large‐area and high‐quality graphene films due to its excellent controllability and scalability. Great efforts have been made to control the growth of graphene to achieve large domain sizes, uniform layers, fast growth, and low synthesis temperatures. Some attempts have been made by both the scientific community and startup companies to mass produce graphene films; however, there is a large difference in the quality of graphene synthesized on a laboratory scale and an industrial scale. Here, recent progress toward the mass production of CVD graphene films is summarized, including the manufacturing process, equipment, and critical process parameters. Moreover, the large‐scale homogeneity of graphene films and fast characterization methods are also discussed, which are crucial for quality control in mass production.  相似文献   

5.
Recently developed chemical vapor deposition (CVD) is considered as an effective way to large‐area and high‐quality graphene preparation due to its ultra‐low cost, high controllability, and high scalability. However, CVD‐grown graphene film is polycrystalline, and composed of numerous grains separated by grain boundaries, which are detrimental to graphene‐based electronics. Intensive investigations have been inspired on the controlled growth of graphene single crystals with the absence of intrinsic defects. As the two most concerned parameters, the size and morphology serve critical roles in affecting properties and understanding the growth mechanism of graphene crystals. Therefore, a precise tuning of the size and morphology will be of great significance in scale‐up graphene production and wide applications. Here, recent advances in the synthesis of graphene single crystals on both metals and dielectric substrates by the CVD method are discussed. The review mainly covers the size and morphology engineering of graphene single crystals. Furthermore, recent progress in the growth mechanism and device applications of graphene single crystals are presented. Finally, the opportunities and challenges are discussed.  相似文献   

6.
Controlling the metal catalyst surface structure is a critical factor to achieve growth of large graphene domains. In this prospect, we explored the annealing process to create an oxide layer and subsequent recrystallization of Cu foil for growth of large graphene domain by the atmospheric pressure chemical vapor deposition (AP-CVD) technique. We revealed the transformation of Cu surface crystallographic structures in every step of annealing process by electron back-scattered diffraction analysis. Initially, electroless polished Cu foils are annealed in Ar and then in H2 atmosphere to obtain a smoother surface with reduced graphene nucleation sites. The transformation of Cu grain structures at various annealing steps was confirmed, where the gas atmosphere and annealing duration have significant influence. Graphene domains with the size more than 560 µm are obtained on the processed Cu surface using polystyrene as solid precursor. It is obtained that the oxidation and recrystallization process of Cu foil surface significantly influence the nucleation density, which enable growth of larger graphene domain in the developed CVD process.  相似文献   

7.
The strong interest in graphene has motivated the scalable production of high-quality graphene and graphene devices. As the large-scale graphene films synthesized so far are typically polycrystalline, it is important to characterize and control grain boundaries, generally believed to degrade graphene quality. Here we study single-crystal graphene grains synthesized by ambient chemical vapour deposition on polycrystalline Cu, and show how individual boundaries between coalescing grains affect graphene's electronic properties. The graphene grains show no definite epitaxial relationship with the Cu substrate, and can cross Cu grain boundaries. The edges of these grains are found to be predominantly parallel to zigzag directions. We show that grain boundaries give a significant Raman 'D' peak, impede electrical transport, and induce prominent weak localization indicative of intervalley scattering in graphene. Finally, we demonstrate an approach using pre-patterned growth seeds to control graphene nucleation, opening a route towards scalable fabrication of single-crystal graphene devices without grain boundaries.  相似文献   

8.
Hexagonal boron nitride (h-BN) is very attractive for many applications, particularly, as protective coating, dielectric layer/substrate, transparent membrane, or deep ultraviolet emitter. In this work, we carried out a detailed investigation of h-BN synthesis on Cu substrate using chemical vapor deposition (CVD) with two heating zones under low pressure (LP). Previous atmospheric pressure (AP) CVD syntheses were only able to obtain few layer h-BN without a good control on the number of layers. In contrast, under LPCVD growth, monolayer h-BN was synthesized and time-dependent growth was investigated. It was also observed that the morphology of the Cu surface affects the location and density of the h-BN nucleation. Ammonia borane is used as a BN precursor, which is easily accessible and more stable under ambient conditions than borazine. The h-BN films are characterized by atomic force microscopy, transmission electron microscopy, and electron energy loss spectroscopy analyses. Our results suggest that the growth here occurs via surface-mediated growth, which is similar to graphene growth on Cu under low pressure. These atomically thin layers are particularly attractive for use as atomic membranes or dielectric layers/substrates for graphene devices.  相似文献   

9.
Copper films having thickness 600 nm were prepared on TiN using chemical vapour deposition (CVD). The deposited films were annealed at various temperatures (350–550°C) in Ar and H2(10%)-Ar ambients. The changes in the grain size of the films upon annealing were investigated. Annealing in an H2(10%)-Ar ambient produced normal grain growth; annealing in an Ar ambient caused grain growth to stop at 550°C. The grain size followed a monomodal distribution and the mean size increased in proportion to the square root of the annealing time, indicating the curvature of the grain is the main driving force for grain growth. Upon annealing at 450°C for 30 min in an H2(10%)-Ar ambient, the average grain size of the film increased from 122 nm to 219 nm, and the resistivity decreased from 2.35 μΩ cm to 2.12 μΩ cm at a film thickness of 600 nm. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Chemical vapor deposition (CVD) on catalytic metal surfaces is considered to be the most effective way to obtain large‐area, high‐quality graphene films. For practical applications, a transfer process from metal catalysts to target substrates (e.g., poly(ethylene terephthalate) (PET), glass, and SiO2/Si) is unavoidable and severely degrades the quality of graphene. In particular, the direct growth of graphene on glass can avoid the tedious transfer process and endow traditional glass with prominent electrical and thermal conductivities. Such a combination of graphene and glass creates a new type of glass, the so‐called “super graphene glass,” which has attracted great interest from the viewpoints of both fundamental research and daily‐life applications. In the last few years, great progress has been achieved in pursuit of this goal. Here, these growth methods as well as the specific growth mechanisms of graphene on glass surfaces are summarized. The typical techniques developed include direct thermal CVD growth, molten‐bed CVD growth, metal‐catalyst‐assisted growth, and plasma‐enhanced growth. Emphasis is placed on the strategy of growth corresponding to the different natures of glass substrates. A comprehensive understanding of graphene growth on nonmetal glass substrates and the latest status of “super graphene glass” production are provided.  相似文献   

11.
Cu-based chemical vapor deposition method can produce large-area graphene films, usually polycrystalline films with grain boundaries as the main defects. One way to reduce grain boundaries is to grow oriented graphene domains (OGDs), which can ultimately perfectly integrate. In contrast to previously reported methods of limiting OGD growth on Cu (1 1 1), we find that OGDs can grow on Cu substrates with a large surface crystallographic structure tolerance. Density functional theory calculations show that this is due to the single lowest energy state of graphene nucleation. The growth temperature is crucial. It must be high enough (1045 °C) to suppress mis-OGD nucleation, but not too high (1055 °C) to deteriorate OGD growth. Mis-OGD nucleation can also be caused by C impurity in Cu grains, which can be depleted by thermal pretreatment of the substrate in an oxidizing atmosphere. On the other hand, OGD growth is not sensitive to the atmosphere at growth stage within the range that we have tested.  相似文献   

12.
Although there is significant progress in the chemical vapor deposition (CVD) of graphene on Cu surfaces, the industrial application of graphene is not realized yet. One of the most critical obstacles that limit the commercialization of graphene is that CVD graphene contains too many vacancies or sp3‐type defects. Therefore, further investigation of the growth mechanism is still required to control the defects of graphene. During the growth of graphene, sublimation of the Cu catalyst to produce Cu vapor occurs inevitably because the process temperature is close to the melting point of Cu. However, to date few studies have investigated the effects of Cu vapor on graphene growth. In this study, how the Cu vapor produced by sublimation affects the chemical vapor deposition of graphene on Cu surfaces is investigated. It is found that the presence of Cu vapor enlarges the graphene grains and enhances the efficiency of the defect‐healing of graphene by CH4. It is elucidated that these effects are due to the removal by Cu vapor of carbon adatoms from the Cu surface and oxygen‐functionalized carbons from graphene. Finally, these insights are used to develop a method for the synthesis of uniform and high‐quality graphene.  相似文献   

13.
We report graphene films composed mostly of one or two layers of graphene grown by controlled carbon precipitation on the surface of polycrystalline Ni thin films during atmospheric chemical vapor deposition (CVD). Controlling both the methane concentration during CVD and the substrate cooling rate during graphene growth can significantly improve the thickness uniformity. As a result, one- or two- layer graphene regions occupy up to 87% of the film area. Single layer coverage accounts for 5%–11% of the overall film. These regions expand across multiple grain boundaries of the underlying polycrystalline Ni film. The number density of sites with multilayer graphene/graphite (>2 layers) is reduced as the cooling rate decreases. These films can also be transferred to other substrates and their sizes are only limited by the sizes of the Ni film and the CVD chamber. Here, we demonstrate the formation of films as large as 1 in2. These findings represent an important step towards the fabrication of large-scale high-quality graphene samples. Electronic Supplementary Material  Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

14.
化学气相沉积法是制备大尺寸、高质量石墨烯的有效方法, 其中金属催化剂的性能直接关系到所制备的石墨烯材料的品质, 因此需对金属催化剂进行表面预处理。本文研究了不同的预处理工艺对常用的铜基底催化剂表面状态的影响, 提出了钝化膏酸洗和电化学抛光协同处理的有效方法, 并对电化学抛光工艺参数(抛光电压、时间)以及铜基底退火工艺(退火温度、时间)等进行了系统研究。研究表明: 电化学抛光电压过高、抛光时间过长容易导致过度抛光, 合适的抛光电压和抛光时间分别为8 V和8 min。退火温度和时间对铜催化剂表面晶粒形态影响较大, 经1000 ℃退火处理30 min后, 铜箔表面晶粒尺寸更大, 分布更均匀。此外, 对CVD法生长制备的石墨烯样品进行表征, 电镜图片和拉曼光谱显示, 获得的石墨烯薄膜的层数较少, 且结构缺陷较少。  相似文献   

15.
ZnO:Cu and ZnS thin films were grown by metal-organic chemical vapour deposition (MOCVD) under atmospheric pressure onto glass substrates. The ZnO:Ag films were fabricated from ZnS films by non-vacuum method that consists of simultaneous oxidation and Ag-doping by the close spaced evaporation (CSE) of silver at the temperature of 500–600 °C. Photo-assisted rapid thermal annealing (PARTA) at ambient air during 10–30 s at the temperature of 700–800 °C was used for the ZnO:Cu films. The samples were studied by X-ray diffraction technique (XRD), atomic force microscopy (AFM), and photoluminescence (PL) measurements. The grain size of ZnO:Cu films increased with an increase of Cu concentration. PL spectra of as-deposited ZnO:Cu films depended on Cu concentration and contained the bands typical for the copper. After PARTA at high temperature the emission maximum shifted towards the short-wave region. During the fabrication of ZnO:Ag films the grain growth process was strongly affected by the Ag loading level. The grain size increased with an increase of Ag concentration and ZnO:Ag films with surface roughness of 8 nm were obtained. Observed 385 nm PL peak for these samples can be attributed to the exciton–exciton emission that proves the high quality of the obtained ZnO:Ag films.  相似文献   

16.
H-assisted plasma CVD (HAPCVD), in which Cu(hfac)2 is supplied as the source material, realizes control of qualities of Cu films, since H irradiation is effective in purifying the Cu films, increasing the grain size, and reducing the surface roughness. Conformal deposition in fine trenches can be realized by decreasing dissociation degree of Cu(hfac)2 using the HAPCVD. Cu(hfac) is identified as the radical mainly contributing to the deposition. Based on the results, we proposed a model in which Cu(hfac) and H react on surfaces to deposit Cu films. We also demonstrated conformal deposition of smooth Cu films of 30 nm thickness and 1.9 mV cm resistivity and almost complete Cu filling in trenches 0.35mm wide and 1.6 mm deep using the HAPCVD.  相似文献   

17.
The gas sensing properties of graphene synthesized by a chemical vapor deposition (CVD) method are investigated. Synthesis of graphene is carried out on a copper substrate using a methane and hydrogen gas mixture by a CVD process at the atmospheric pressure. The graphene films are transferred to different substrates after wet etching of the copper substrates. The Raman spectra reveal that the graphene films made on SiO2/Si substrates are of high quality. The reflectance spectra of graphene were measured in UV/Visible region of the spectrum. Theoretically calculated reflectance spectra based on Fresnel's approach indicates that the CVD graphene has a single layer. The gas sensing properties of graphene were tested for different reducing gasses as a function of measurement temperature and gas concentration. It is found that the gas sensing characteristics such as response time, recovery time, and sensitivity depend on the target gas, gas concentration, test temperature, and the ambient gas composition. The cross sensitivity of few combinations of reducing gasses such as, NH3, CH4, and H2 was also investigated.  相似文献   

18.
Chemical vapor deposition on copper substrates is a primary technique for synthesis of high quality graphene films over large areas. While well-developed processes are in place for catalytic growth of graphene on bulk copper substrates, chemical vapor deposition of graphene on thin films could provide a means for simplified device processing through the elimination of the layer transfer process. Recently, it was demonstrated that transfer-free growth and processing is possible on SiO(2). However, the Cu/SiO(2)/Si material system must be stable at high temperatures for high quality transfer-free graphene. This study identifies the presence of interdiffusion at the Cu/SiO(2) interface and investigates the influence of metal (Ni, Cr, W) and insulating (Si(3)N(4), Al(2)O(3), HfO(2)) diffusion barrier layers on Cu-SiO(2) interdiffusion, as well as graphene structural quality. Regardless of barrier choice, we find the presence of Cu diffusion into the silicon substrate as well as the presence of Cu-Si-O domains on the surface of the copper film. As a result, we investigate the choice of a sapphire substrate and present evidence that it is a robust substrate for synthesis and processing of high quality, transfer-free graphene.  相似文献   

19.
Chemical vapor deposition(CVD)-grown graphene films on Cu foils,exhibiting fine scalability and high quality,are still suffering from the adverse impact of surf...  相似文献   

20.
In this paper, large-area uniform multilayer graphene films were synthesized on copper in one growth route by modified low pressure chemical vapor deposition (LPCVD) method by introducing an assembly into the conventional LPCVD method. Scanning electronic microscopy, optical microscopy, Raman spectroscopy, ellipsometry, and transmission electron microscopy were used to characterize the graphene films. The results showed that the graphene films were multilayer. And there are about six layers with good continuity and uniformity. Meanwhile, the growth mechanism was illustrated by a growth model based on the analysis of the effects of the introduced assembly on the generation of the activated carbon atoms and on the catalysis of Cu molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号