首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of particle-wall interaction on retention ratios in sedimentation field-flow fractionation (FFF) is shown to be describable in terms of a semiempirical parameter δ(w) having units of length. A method of experimentally determining the value of this parameter for a given system is presented. It requires the determination of retention ratios for a set of particle standards over a range of field strengths. The value of δ(w) is simply obtained from the slope of a certain straight line plot of the retention data. Once determined, this parameter may be incorporated into the procedure for the determination of particle diameters from measured retention times to take account of the effects of particle-wall interaction. In principle, δ(w) is independent of field strength and is the same for different FFF instruments providing they employ the same carrier liquid and channel wall material. Therefore, δ(w) values have the potential to be universal system constants transferable from one instrument to another.  相似文献   

2.
We have investigated the retention behavior of chromatographic particles in thermal field-flow fractionation (FFF). Retention time is found to increase with increasing temperature drop across the channel thickness, as expected for species exhibiting a thermophoretic mobility. Experiments have been performed with a vertically oriented channel rather than by using the classical horizontal configuration as this leads to much more reproducible retention data. In acetonitrile, silica-based particles are more retained than octadecyl-bonded silica particles, which confirms our previous finding, by means of a different method, that the thermophoretic mobility of the latter is smaller than that of the former. Whatever the type of particles and the nature of the carrier liquid, the relative retention time is observed to decrease with increasing carrier flow rate. This indicates that a hydrodynamic lift force acts on particles to move them away from the accumulation wall, as is usually observed in all FFF experiments with micrometer-sized particles. However, upward and downward flow directions in the vertical channel lead to similar retention data, indicating that inertial lift forces have a minor influence on retention. In addition, the relative retention time steadily decreases with increasing sample concentration, suggesting that the hydrodynamic lift force increases significantly with sample concentration. Accordingly, we speculate that a new transport phenomenon, called shear-induced hydrodynamic diffusion, not previously accounted for in the modeling of retention in FFF, is controlling the migration of the particles in the FFF channel. Implications of the influence of this phenomenon in other FFF experiments are discussed.  相似文献   

3.
The retention of polystyrene and silica colloids that have been chemically modified is measured in several aqueous carrier liquids. Retention levels are governed by particle size and composition but are also sensitive to subtle changes in the carrier. Size-based selectivities are higher in aqueous carriers compared to acetonitrile. In aqueous carriers, retention varies dramatically with the nature of the additive, and for a given additive, retention increases with ionic strength, regardless of modifications to the particle surface. The role played by electrostatic effects in retention is studied by varying the ionic strength of the carrier, estimating electrical double layers, determining particle-wall interaction parameters, and calculating the coefficients of mass diffusion and thermal diffusion. Although electrostatic phenomena can affect mass diffusion and particle-wall interactions in carriers of low ionic strength (<10(-3) M), such effects are not great enough to explain the dependence of retention on ionic strength. Therefore, thermal diffusion must be affected directly. Thermal diffusion is found to increase with pH, and at a given pH with the surface tension of the suspended particle. Finally, while the addition of the surfactant FL-70 generally decreases retention, greater retention levels can ultimately be achieved with FL-70 because larger temperature gradients can be used without particle adsorption to the accumulation wall.  相似文献   

4.
Many industrial processes involve particles in a carrier fluid, and it is often of interest to monitor the size of these particles noninvasively. The aim of this paper is to develop a theoretical model of multiple particle-wall impact vibrations that can be used to recover the particle size from experimental data. These vibrations have been measured by an ultrasonic transducer attached to the exterior of a vessel containing a stirred-particle-laden fluid. A linear systems model is derived for the response of the piezoelectric ultrasonic transducer, which has a single matching layer. The acceleration power spectrum of these vibrations has been shown experimentally to contain information on the size of the impacting particle. In particular, the frequency of the main spectral lobe is inversely proportional to the particle size. We present a theoretical model that agrees with this empirically observed phenomenon. The theoretical model is then used to simulate multiple particle-wall impacts, with each particle impacting at a randomly chosen location. A set of theoretical vibration spectra arising from multiple particle-wall impacts are integrated and compared with the experimental data. The ability of this approach to distinguish between different particle sizes is clearly shown.  相似文献   

5.
Electrical field-flow fractionation (ElFFF) results for a series of polystyrene latex beads are presented. To first approximation, retention behavior can be related to conventional FFF theory, modified to account for a particle-wall repulsion effect. Size selectivity and column efficiency were exceptionally high, again approaching the upper limit predicted by theory. For the channel described in the present study, application of small voltages (typically less than 2 V) across the thin (131 microm) separation space defined by a Teflon spacer generates nominal field strengths of 10(4) V m(-1). However, electrode polarization reduces the effective field across the bulk of the channel to approximately 3% of the nominal value in the system studied. The magnitude of the applied field was calibrated by using standard latex beads of known size and mobility. Perturbations to retention behavior, such as overloading, were investigated. It was found that ideal separations occur at very dilute concentrations of the sample plug and that working in systems of very low ionic strength, the double-layer thickness adds significantly to the effective size of a particle. Steric inversion was observed at a particle size of approximately 0.4 microm under the conditions employed.  相似文献   

6.
Field and flow programming and their combination, dual programming, are shown to extend the particle size range to which a single flow/hyperlayer field-flow fractionation (FFF) run is applicable to approximately 1-50 microns. The rationale for programming flow/hyperlayer FFF (or other forms of lift hyperlayer FFF) is to expand the diameter range of micron size particles that can be resolved in a single run. By contrast, the reason for programming normal-mode FFF, the only kind of programming previously realized in FFF, is to reduce the analysis time of submicron particle samples of considerable size variability. These differences are explained in detail in relationship to the basic mechanisms governing retention in normal, steric, and lift hyperlayer FFF. Experiments are described in which field, flow, and dual programming are used to expand the accessible diameter range of flow/hyperlayer FFF. An example is shown in which 11 sizes of latex microspheres in the 2-48-microns diameter range are separated by dual programming in 11 min.  相似文献   

7.
An algorithm that employs numerical integration for analysis of field-flow fractionation (FFF) data is presented. The algorithm utilizes detector response, field strength, and channel flow rate data, monitored at discrete time intervals during sample elution to generate a distribution of sample components according to particle size or molecular weight. The field strength and channel flow rate may either be held constant or programmed as functions of time, and it is not necessary for these programs to follow specific mathematical functions. If experimental conditions are monitored during a run, the algorithm can account for any deviation from nominal set conditions. The algorithm also allows calculation of fractionating power for the actual conditions as monitored during the run. The method provides greatly increased flexibility in the application of the FFF family of techniques. It removes the limitations on experimental conditions incurred by adherence to analytically available solutions to FFF theory, allowing ad hoc variation of field strength and other experimental parameters as necessary to increase sensitivity and specificity of the method. An implementation of the algorithm is described that is independent of the FFF technique (i.e., independent of field type) and mode of operation. To reduce computation time, it uses mathematical techniques to reduce the required number of numerical integrations. This is of particular importance when the perturbations to ideal FFF theory, such as those due to the effects of hydrodynamic lift forces, particle-wall or particle-particle interactions, and secondary relaxation, necessitate relatively lengthy numerical calculations.  相似文献   

8.
Triboelectric separation is an effective way to separate fine powders with particle sizes and densities in the same order of magnitude. Many relevant process variables influence the charging behaviour; however, the corresponding effects on the subsequent separation of particles remain unknown. To utilize triboelectric separation as a powerful tool for fine powder separation, process parameters such as the choice of contact wall materials in the charging region have to be investigated. We report for the first time the influence of the tube’s wall material, in which particle charging took place, on triboelectric separation of fine protein-starch mixtures. Different electrically insulating materials along the triboelectric series were tested. No significant influence of the wall material on the separation selectivity and efficiency was found. In addition, particle-wall interaction was inhibited using an experimental setup which allows to control the flow boundary-layer by blowing out air through the tube wall. Also the results obtained by this novel setup showed no significant differences compared to the setup with particle-wall interactions. Additionally, CFD simulations were used to confirm the absence of particle-wall interactions in the boundary-layer control setup. A variation of the boundary-layer thickness leads to a constriction of the particle-containing flow region in the centre of the pipe. Experiments show that this compression of the particle flow zone results in no further increase in selectivity and efficiency of separation. Thus, particle-particle interaction is the prevalent triboelectric charging mechanism of fine powders charged in a turbulent flow regime.  相似文献   

9.
Because of the important but mathematically complex role played by hydrodynamic lift forces in sedimentation/steric FFF, applied generally to particles greater than 1 micron in diameter, retention cannot readily be related to particle diameter on the basis of simple theory. Consequently, empirical calibration is needed. Unfortunately, retention is based on particle density as well as size so that a purely size-based calibration (e.g., with polystyrene latex standards) is not generally valid. By examining the balance between driving and lift forces, it is concluded that equal retention will be observed for equal size particles subject to equal driving forces irrespective of particle density. Therefore by adjusting the rotation rate to exactly compensate for density, retention can be brought in line with that of standards, a conclusion verified by microscopy. Linear calibration plots of log (retention time) versus log (diameter) can then be used. This approach is applied to two glass bead samples (5-30 and 5-50 microns) using both a conventional and a pinched inlet channel. The resulting size distribution curves are self consistent and in good agreement with results obtained independently.  相似文献   

10.
Gravitational field-flow fractionation (GrFFF) is a useful technique for fast separation of micrometer-sized particles. Different sized particles are carried at different velocities by a flow of fluid along an unobstructed thin channel, resulting in a size-based separation. They are confined to thin focused layers in the channel thickness where force due to gravity is exactly opposed by hydrodynamic lift forces (HLF). It has been reported that the HLF are a function of various parameters including the flow rate (or shear rate), the size of the particles, and the density and viscosity of the liquid. The dependence of HLF on these parameters offers a means of altering the equilibrium transverse positions of the particles in GrFFF, and hence their elution times. In this study, the effect of the viscosity of the carrier fluid on the elution behavior (retention, zone broadening, and resolution) of micrometer-sized particles in GrFFF was investigated using polystyrene (PS) latex beads as model particles. In order to change the carrier liquid viscosity without affecting its density, various amounts of (hydroxypropyl) methyl cellulose (HPMC) were added to the aqueous carrier liquid. It was found that particles migrate at faster rates as the carrier viscosity is increased, which confirms the dependence of HLF on viscosity. At the same time, particle size selectivity decreased but peak shape and symmetry for the more strongly retained particles improved. As a result, separation was improved in terms of both the separation time and resolution with increase of carrier viscosity. A theoretical model for plate height in GrFFF is also presented, and its predictions are compared to experimentally measured values.  相似文献   

11.
In some field-flow fractionation (FFF) techniques, the basic analyte-field interaction parameter, λ, is not constant but varies within the channel cross section as a result of the nonuniformity of the force exerted by the field on the analyte. This is the case, for instance, in thermal FFF, because of the temperature dependence of the relevant physicochemical transport parameters. To account for this effect, a new FFF retention model is developed, allowing a linear variation of λ from the accumulation to the depletion wall, which is assumed to describe correctly moderate nonuniformity in λ in the vicinity of the accumulation wall. A methodology for sample characterization on the basis of this model is proposed. It associates λ(app), the apparent λ value derived from the retention ratio by means of the classical retention model, with a specific distance from the accumulation wall. An empirical relationship between that distance and λ(app) is derived. In the high retention limit, it is found that this specific distance is not equal, as sometimes intuitively believed, to the mean distance of the molecule or particle cloud to the accumulation wall but is approximately equal to twice this mean distance. The validity of the proposed approach is checked.  相似文献   

12.
Flow field-flow fractionation (flow FFF) was employed to determine the mean diameter and the size distribution of acrylate latex materials having diameters ranging from 0.05 to 1 μm. Mean diameters of the samples determined by flow FFF are in good agreement with those obtained from photon correlation spectroscopy (PCS). Scanning electron microscopy (SEM) yielded a mean diameter that is about 20% lower than those obtained from flow FFF or PCS, probably due to the shrinkage of particles during sample drying and high-vacuum measurements. It was found that flow FFF is particularly useful for the determination of particle size distributions of latex materials having broad size distributions. Flow FFF separates particles according to their sizes and yields an elution curve that directly represents the particle size distribution of the sample. In PCS, measurements had to be repeated at more than one scattering angle to obtain an accurate mean diameter for the latex having a broad size distribution. Flow FFF was fast (less than 12 min of run time) and showed an excellent repeatability in measuring the mean diameter with ±5% relative error.  相似文献   

13.
The purpose of this study is to develop a novel bacterial analysis method by coupling the flow field-flow fractionation (flow FFF) separation technique with detection by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. The composition of carrier liquid used for flow FFF was selected based on retention of bacterial cells and compatibility with the MALDI process. The coupling of flow FFF and MALDI-TOF MS was demonstrated for P. putida and E. coli. Fractions of the whole cells were collected after separation by FFF and further analyzed by MALDI-MS. Each fraction, collected over different time intervals, corresponded to different sizes and possibly different growth stages of bacteria. The bacterial analysis by flow FFF/MALDI-TOF MS was completed within 1 h with only preliminary optimization of the process.  相似文献   

14.
Self-assembled cationic lipid-DNA complexes have shown an ability to facilitate the delivery of heterologous DNA across outer cell membranes and nuclear membranes (transfection) for gene therapy applications. While the size of the complex and the surface charge (which is a function of the lipid-to-DNA mass ratio) are important factors that determine transfection efficiency, lipid-DNA complex preparations are heterogeneous with respect to particle size and net charge. This heterogeneity contributes to the low transfection efficiency and instability of cationic lipid-DNA vectors. Efforts to define structure-activity relations and stable vector populations have been hampered by the lack of analytical techniques that can separate this type of particle and analyze both the physical characteristics and biological activity of the resulting fractions. In this study, we investigated the feasibility of flow field-flow fractionation (flow FFF) to separate cationic lipid-DNA complexes prepared at various lipid-DNA ratios. The compatibility of the lipid-DNA particles with several combinations of FFF carrier liquids and channel membranes was assessed. In addition, changes in elution profiles (or size distributions) were monitored as a function of time using on-line ultraviolet, multiangle light scattering, and refractive index detectors. Multiangle light scattering detected the formation of particle aggregates during storage, which were not observed with the other detectors. In comparison to population-averaged techniques, such as photon correlation spectroscopy, flow FFF allows a detailed examination of subtle changes in the physical properties of nonviral vectors and provides a basis for the definition of structure-activity relations for this novel class of pharmaceutical agents.  相似文献   

15.
In carrier-based Dry Powder Inhalers (DPI), fine API powder covers the surface of bigger carrier particles giving rise to dry coated particles, such that their flow properties are improved. In the hard-shell capsule of Cyclohaler DPI, powder deaggregation and discharge occurs as a result of the centrifugal motion and the subsequent aerodispersion to the mouthpiece induced by the patient’s inhalation. In this work, the crucial initial transient of this dispersion process was analysed through DEM (Discrete Element Method) simulations, by considering the solid phase only. The accelerated rotational motion of the capsule was simulated in the frame of reference of an observer rotating with the capsule, appropriately considering fictitious forces. The effect of the vibrations due to collisions between the capsule and the inhaler on powder discharge was evaluated as well for carrier particle systems. The results provide a punctual mapping of the particle-wall collisions within the capsule, allowing the path of the solids to be tracked until discharge. Simulations were carried out on drug-carrier blends with extreme size difference, considering adhesive interactions, elucidating the early-stage dynamics of the detachment process that occurs inside the capsule due to the interactions between particles and between particles and walls.  相似文献   

16.
Sant HJ  Kim JW  Gale BK 《Analytical chemistry》2006,78(23):7978-7985
A channel configuration for the elimination of end effects in field-flow fractionation (FFF) channels is simulated and demonstrated for a microfabricated FFF system. In field-flow fractionation, the carrier liquid and sample particles are transferred from a point injection to the full breadth of the rectangular channel using a triangular end piece at the inlet. The nonuniformity in streamline length generated by this end piece results in an increased instrument-related plate height. An additional contribution from the end piece at the outlet of the channel further increases the total band broadening. This paper presents a novel approach to minimize end-effect contributions to plate height by fabricating microstructures in the channel end sections to redistribute the flow streams and force streamline lengths to be more uniform. Numerical analysis of the flow profile and sample dispersion (including spreading of particles due to diffusion and advection) is carried out to investigate the optimized microstructure column size, shape, and placement in the end pieces. The configuration obtained from the numerical simulation results is used to design a prototype device. Experimental measurement of the plate heights for this prototype with an on-chip impedance-based detector shows marked improvement in performance due to the presence of the microstructures in comparison to conventional FFF channel geometry with an average 50% reduction in plate height. The redesigned inlet triangle results in a uniform transition of the point-injected sample into a thin and straight band across the width of the channel at the start of the rectangular section of the fractionation channel.  相似文献   

17.
Kim WS  Park YH  Shin JY  Lee DW  Lee S 《Analytical chemistry》1999,71(15):3265-3272
The applicability of field-flow fractionation (FFF) was investigated for determination of size and size distribution of diesel soot particles. A sample preparation procedure was developed for FFF analysis where soot particles are recovered from filters in an ethanol bath sonicator, and then they are dispersed in water containing 0.05% Triton X-100 and 0.02% NaN(3). Mean diameters obtained from sedimentation FFF (SdFFF) and flow FFF (FlFFF) agree well with each other and are in good agreement with diameters obtained from photon correlation spectroscopy (PCS) and scanning electron microscopy. The relative error was less than 11%. Data show diesel soot particles have broad size distributions ranging from 0.05 up to ~0.5 μm with the mean diameters between 0.1 and 0.2 μm. The use of FlFFF is more convenient as FlFFF fractograms can be converted directly to size distributions, while the conversion of the SdFFF fractogram needs the particle density information. The density needed for SdFFF analysis was obtained by combining the SdFFF retention data with the PCS size data. For samples whose density is known, SdFFF may be more useful as SdFFF provides a wider dynamic range than FlFFF under constant field strength.  相似文献   

18.
Field flow fractionation (FFF) technique is used to determine the size of water-soluble Au, ZnS, ZnS-Mn2+ nanoparticles, and CdSe, CdSe-DNA quantum dots (QDs). The results of the FFF measurements are compared with the particle size analysis using conventional techniques like scanning electron microscopy (SEM), transmission electron microscopy (TEM), and dynamic light scattering (DLS) studies. Water-soluble gold nanoparticles (AuNPs) stabilized by mercaptosuccinic acid (MSA) as the ligand when analyzed by the SEM and DLS showed evidence of extensive aggregation, preventing an accurate determination of the average particle size. The TEM analyses without staining offered a facile measurement of the nanoparticle core but average particle size determination required analysis of the TEM image using image analysis software. On the other hand the FFF is seemingly a convenient and easy method for the determination of the average particle size of the AuNPs. In case of the ZnS and ZnS-Mn2+ nanoparticles with mercaptopropionic acid (MPA) as the capping agent severe aggregation prevented accurate estimation of particle sizes even by the high resolution TEM (HRTEM), where as the size determination by the FFF was very facile. Analysis of the CdSe-DNA conjugate by the TEM was difficult as the sample got damaged upon exposure to the electron beam. The FFF cross-flow condition is apparently noninvasive and hence the technique was very effective in characterizing the CdSe-DNA QDs. Furthermore, using this simple technique it was possible to fractionate a sample of the AuNPs. The FFF measurement of water-soluble nanoparticles is an excellent complement to characterization of such particles by the conventional tools.  相似文献   

19.
Particles breakage occurs in many industrial applications. During the last decade many works have been devoted for modelling and simulating such processes. A new and innovative procedure of empirical comminution functions for Discrete Element Method (DEM) simulations (Kalman et al. in Granul Matter 11(4):253–266, 2009) posed the question how to introduce the fragments of the broken particle back into the computational domain. Daughter particles (Fragments) spawning and interaction imposes several problems during DEM simulation. Some of the main problems are: seeding (allocating) daughter particles and their initial conditions i.e. fragments locations, velocities and physical properties. This work focuses on the daughter particles seeding and the interaction between “sibling” particles for spherical particles. Fragments spawning and interaction algorithm for particle breakage during DEM simulation was developed. The algorithm enables prediction of particle comminution/attrition processes using DEM applications. The new algorithm can utilize any breakage function allowing unlimited fragment size fractions. In the proposed model, sibling particles can overlap without increasing the energy of the system in the simulation. Particle-particle and particle-wall interactions are calculated using the standard DEM calculations. Daughter particles interactions were calculated using the developed temporary contact radius model. The model was utilized to predict particle comminution in jet milling and particle attrition during pneumatic conveying with great successes.  相似文献   

20.
The diffusion of small suspended particles in a turbulent channel flow is studied by solving the transport advection-diffusion equation. The mean flowfield in the channel is simulated using a two-equation k-ε turbulence model. Deposition velocity is evaluated at different sections in the channel for different particle sizes and flow Reynolds numbers. The effects of turbulence dispersion and Brownian diffusion on particle deposition velocity are discussed. The variation of particle deposition velocity with particle diameter, density and flow Reynolds number are analyzed. The wall deposition velocities for different size particles are compared with those obtained by other models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号