共查询到20条相似文献,搜索用时 15 毫秒
1.
Jacketing technology using fiber reinforced polymer (FRP) composites is being applied for seismic retrofit and rehabilitation of reinforced concrete (RC) columns designed and constructed under older specifications. In this study, the authors develop an electromagnetic (EM) imaging technology for detecting such damage as voids and debonding between the jacket and the column, which may significantly weaken the structural performance of the column otherwise attainable by jacketing. This technology is based on the reflection analysis of a continuous EM wave sent toward and reflected from layered FRP–adhesive-concrete medium: Voids and debonding areas will generate air gaps which produce additional reflections of the EM wave. In this study, dielectric properties of various materials involved in the FRP-jacketed RC column were first measured using a plane-wave reflectometer. The measured properties were then used for a computer simulation of the proposed EM imaging technology. The simulation demonstrated the difficulty in detecting damage by using plane waves, as the reflection contribution from the voids and debonding is very small compared to that from the jacketed column. In order to alleviate this difficulty, dielectric lenses were designed and fabricated, focusing the EM wave on the bonding interface. Finally, three concrete columns were constructed and wrapped with glass–FRP jackets with various voids and debonding conditions artificially introduced in the bonding interface. Using the proposed EM imaging technology involving the especially designed and properly installed lenses, these voids and debonding areas were successfully detected. This technology can be used to assess the jacket bonding quality during the initial jacket installation stage and to detect debonding between the column and the jacket caused by earthquake and other destructive loads. 相似文献
2.
Gilles Pijaudier-Cabot Frédéric Dufour Marta Choinska 《Canadian Metallurgical Quarterly》2009,135(9):1022-1028
Experimental tests exhibit a strong interaction between material damage and transport properties of concrete. There are at least two asymptotic cases where some theoretical modeling exists: in the case of diffuse cracking, the material permeability should be controlled by damage, e.g., by the decrease of average stiffness due to microcracking. In the case of localized microcracking, and after a macrocrack has formed, permeability should be controlled by a power function of the crack opening (Poiseuille flow). For quasi-brittle materials with evolving microstructure due to mechanical loads, a transition regime on the evolution of permeability between these two asymptotic cases is expected. In this contribution, we define a relationship between permeability and damage that is consistent with the two above configurations. One of the key issues is to relate the crack opening to the state variables in the continuum approach, so that the two asymptotic cases are expressed in the same variable system and can be matched. A simplified approach is used for this purpose. The permeability law is then derived using a mixing formula that weights each asymptotic regime with damage. To illustrate the influence of the matching law on structural response, finite-element simulations of a Brazilian splitting test and a comparison with existing test data are presented. 相似文献
3.
A state-of-the-art methodology is proposed for damage diagnosis of structures, such methodology being presented in the example of a simply supported reinforced concrete (RC) beam. The severity and location of defects within the RC structures can be assessed much more conveniently by using the back-propagation neural network technique. A simply supported RC beam with specified size (i.e., rectangular cross section and 4 m span) and assumed defects is theoretically analyzed by a finite-element program to generate training and the testing of numerical examples necessary to assess the damaged RC structure by using the neural network (NN). Numerical examples are then generated according to the displacement time history of the defected beams loaded by an impact force at the beam center. In addition, 10 sets of test beam with the assumed damage and same specified size of the numerical examples are constructed in full scale. The damage scenario of each test beam is also diagnosed by using the well-trained NN according to the displacement time history, which is the history of the responses caused by the impact loading acting at the beam centers. Based on the study and test results, the damage scenarios of the 10 sets of test beams are successfully classified. 相似文献
4.
In this paper, a damage constitutive model accounting for induced anisotropy and bimodular elastic response is applied to two-dimensional analysis of reinforced concrete structures. Initially, a constitutive model for the concrete is presented, where the material is assumed as an initial elastic isotropic medium presenting anisotropy and bimodular response (distinct elastic responses, whether tension or compression stress states, prevail) induced by damage. Two damage tensors govern the stiffness under prevailing tension or compression stress states. Criteria are then proposed to characterize the dominant states. Finally, the proposed model is used in plane analysis of reinforced concrete beams to show its potential for use and to discuss its limitations. 相似文献
5.
Nondestructive damage assessment of civil engineering structures has become a focus of increasing interest for recent decades. Its core is to extract effective damage characteristic information capable of reflecting structural damage status. In this study, fractal theory is adopted to extract the fractal damage characteristic factors of a reinforced concrete structure by characterizing its surface-crack distributions. The concentrated and even load spaces are generalized as applicable spaces for employing fractal-to-structural damage assessment. As demonstrated in the damage assessment of reinforced concrete beams under four-point bending and aged crossbeams of an operation bridge in a sluice, the surface-crack distributions of reinforced concrete structures exhibit monofractal character in the concentrated load space, and multifractal character in the even load space. The physical damage interpretations of the extracted monofractal and multifractal damage characteristic factors in the respective load spaces are then established by analyzing the correlations between the monofractal dimension and the natural frequency, and between the multifractal singular spectrum and the average carbonized depth and residual material intensity, respectively. The closely linear fitting relationships between the fractal quantities and traditional damage characteristic factors indicate that the fractal (i.e., monofractal and multifractal) quantities can serve as viable and novel damage characteristic factors in the online damage assessment of concrete structures. It is significant that the proposed fractal damage characteristic factors overcome some disadvantages of traditional damage characteristic factors in practical applications, and they extend the technique of fractal into the meaningful damage assessment of reinforced concrete materials. 相似文献
6.
The effectiveness of vibration-based methods in damage detection of a typical highway structure is investigated. Two types of full-scale concrete structures subjected to fatigue loads are studied: (1) Portland cement concrete pavements on grade; and (2) a simply supported prestressed concrete beams. Fast Fourier transform (FFT) and continuous wavelet transform (CWT) are used in the analysis of the structures’ dynamic response to impact, and results from both techniques are compared. Both FFT and CWT can identify which frequency components exist in a signal. However, only the wavelet transform can show when a particular frequency occurs. Results of this research are such that FFT can detect the progression of damage in the beam but not in the slab. In contrast, the CWT analysis yielded a clear difference between the initial and damaged states for both structures. These findings confirm the conclusions of previous studies conducted on small-scale specimens that wavelet analysis has a great potential in the damage detection of concrete. The study also demonstrates that the approach is applicable to full-scale components of sizes similar or close to actual in-service structures. 相似文献
7.
Ufuk Dilek 《Canadian Metallurgical Quarterly》2005,19(1):42-48
This article discusses the use of nondestructive and laboratory testing techniques and load testing in evaluation of fire damage to precast prestressed concrete members in a parking structure. The in situ evaluation phase consisted of nondestructive testing of concrete using ultrasonic pulse velocity and radiographic exposures to locate tendons prior to the removal of cores. Flexural strength of concrete and dynamic Young’s modulus of elasticity and air permeability index of 25?mm (1?in.) thick disks sawed from the cores were determined in the subsequent laboratory testing phase. Analysis of concrete properties at small depth increments permitted assessment of whether a damage gradient was present and the nature of any gradient found, as expressed by changes in these properties. Based on the compromise in material properties indicated by nondestructive and laboratory testing, two affected double-tees were load tested. The deflection pattern observed during load testing confirmed the compromise indicated by the findings of the testing program. 相似文献
8.
Ufuk Dilek 《Canadian Metallurgical Quarterly》2007,21(4):257-263
This article summarizes an engineering evaluation of the extent of fire damage to a concrete structure under construction. The fire occurred in a portion of the reinforced concrete structure and visibly damaged a load bearing exterior foundation wall. The purpose of the assessment was to promptly evaluate the in situ condition of the wall and recommend necessary repair or replacement options prior to commencement of backfilling and the concrete construction to be supported by the subject wall. The engineering assessment of the damaged wall included a nondestructive evaluation phase consisting of ultrasonic pulse velocity testing and a laboratory testing phase on the concrete cores removed from the damaged wall. Dynamic Young’s modulus of elasticity and an air permeability index of 25?mm (1?in.) thick disks sawed from the cores were determined. Analysis of properties of 25?mm (1?in.) concrete specimens permitted assessment of the presence and degree of any damage in smaller depth increments compared to the size of a compressive strength core. Significant differences were not indicated by compressive strength of cores, however, the in situ nondestructive testing and laboratory testing of the disks were effective in determining the depth of damage, as a result of the fire. The results of the nondestructive and laboratory evaluation indicated that the distressed zone of the concrete was limited to a near-surface layer. Repair recommendations were based on removal and replacement of the affected concrete sections identified by the testing program. 相似文献
9.
Gopal Mitra Kamal Kant Jain Bishwajit Bhattacharjee 《Canadian Metallurgical Quarterly》2010,24(6):562-570
A method is presented for obtaining condition index of corrosion distressed RC buildings. Method is developed using concepts of fuzzy logic and it integrates visual inspection with in situ investigations for carbonation and chloride content. Distress manifestations and repair priorities are classified. Condition is related to repair priorities through condition ratings. Repair priorities are fuzzy in nature as they are dependent on interpretation of the inspector. Questionnaire survey is prepared and responses are collected from the experts. Obtained data are used for development of fuzzy membership functions for defined repair priorities. A building can be subdivided into various elements. Observations for various distress manifestations are recorded for each element, using the format proposed. These observations are combined using fuzzy extension technique to obtain individual membership function for each element. Defuzzyfication using center of sum method provides with the combined building condition index (BCI) from elemental membership functions. Obtained BCI provides direct measure of condition and repair needs of the building. Developed methodology is explained through a case study on condition assessment of an academic building. 相似文献
10.
The adhesive attachment of fiber-reinforced polymers (FRP) laminate to the external face of reinforced concrete structures is currently one of the most popular and effective methods for retrofitting and strengthening concrete structures. With this method, the additional strength of the attached reinforcement is transmitted into the concrete members through adhesion. However, the relatively weak adhesive interface fundamentally limits the efficacy of the method. Much effort has been made in the research community to improve the bond strength and develop bond models, but a satisfactory solution has yet to be found. Mechanical fastening is another more traditional technology that is used to bond one material to another. This paper introduces a new hybrid bonding technique that combines adhesive bonding and a new type of mechanical fastening. The new mechanical fastening technique does not rely on bearing to transmit the interfacial shear, but instead increases the interfacial bond by resisting the separation of the FRP laminate from the concrete substrate. Experimental tests demonstrated that the bond strength with this new hybrid bonding technology was 7.5 times that of conventional adhesive bonding. Furthermore, the new bonding technique is applicable to all types of commercially available FRP laminate (fabric, sheet, plate, and strip), and in principle is also applicable to materials other than FRP. 相似文献
11.
A three-dimensional (3D) hypoelastic material model for modeling material properties of cracked reinforced concrete is proposed. Material properties of multidirectionally cracked reinforced concrete are represented by the material properties of intact concrete and a number of uniaxially cracked concrete with their coupling solids. Cracking effects due to multiple nonorthogonal cracks are traced in each uniaxially cracked concrete. Tension softening and aggregate interlock occurring at the crack interface as well as tension stiffening and compression softening initiated in concrete between cracks due to multiple nonorthogonal cracks are all incorporated explicitly. RC panels under in-plane loading and RC slab under pure torsion have been analyzed. The developed 3D hypoelastic material model has been proved to be efficient and effective in modeling the material behaviors of cracked reinforced concrete in shell-type RC structures. The deformational response, the ultimate strength, and failure mode can be captured reasonably well. 相似文献
12.
In this study, a new concept for detecting air voids, water intrusion, and glue infiltration damages in fiber-reinforced polymers (FRPs)-strengthened concrete structures was developed. The concept, based on detecting the local dielectric permittivity variations, was employed to design coplanar capacitance sensors (CCSs) to detect such defects. An analytical model was used to introduce the sensor operation theory and analyze the influence of different sensor parameters on the output signals and to optimize sensor design. Two dimensional finite element (FE) simulations were performed to assess the validity of the analytical results and to evaluate other sensor design-related parameters. To experimentally verify the FE model, dielectric properties of various materials involved in FRP-strengthened concrete systems were measured. In addition, two concrete specimens strengthened with FRP laminates and containing preinduced defects were constructed and inspected in a laboratory setting. Good agreement was found between experimental capacitance measurements and those predicated by the FE simulations. The proposed CCS design, coupled with commercially available portable capacitance meters, would facilitate field implementation of the proposed technique for rapid inspection of FRP-strengthened concrete structures without the need for sophisticated data analyses usually required by other more expensive and time consuming methods. 相似文献
13.
Eric N. Landis 《Canadian Metallurgical Quarterly》2006,132(7):771-774
Continuum damage mechanics models, while elegant and useful, suffer from what are typically highly idealized relationships between model and material. In this technical note, using three-dimensional (3D) measurements of internal cracking, direct, albeit simple relationships were made between the quantity of cracking and a corresponding scalar damage variable. Geometric properties of internal cracks were measured through 3D image analysis of in situ microtomographic scans of small concrete specimens subject to compression. A scalar damage variable was determined from the changes in stiffness measured in successive loading cycles. Results showed a nearly linear relationship between the damage variable and the volume of new cracks formed. In contrast, results showed a nonlinear relationship between the damage variable and the crack surface area. Such relationships can potentially lead to a more physical basis for continuum damage formulations. 相似文献
14.
A new reinforcement system termed the prefabricated cage system (PCS) that can be used as an alternative to the rebar reinforcement cage is economically evaluated. PCS is a prefabricated reinforcement that enables easier, faster, and more reliable construction. Use of PCS shortens the construction schedule time and lowers total construction cost. This is important to both owners and construction contractors. The engineering economics methods presented in this paper would also be of interest to researchers. Reinforced concrete structures with PCS reinforced columns have been considered in this research, as it is one of the major applications of PCS. Various parameters affecting the economics of PCS are reviewed and a case study structure is analyzed comparing the costs of the structure with rebar reinforced columns to costs of the structure with PCS reinforced columns. The investigation shows that using PCS results in a 33.3% time savings and a 7.1% cost savings over rebar for each column. This results in an average of 3.6% savings on total project cost; an average of 22.2% savings on total column costs; 20.4% savings on total project time period, and 33.3% savings on columns construction time period. The cost savings are estimated based on production of small quantities of PCS reinforcement. Mass production of PCS reinforcement would result in even higher cost savings. 相似文献
15.
Improved Image Analysis for Evaluating Concrete Damage 总被引:1,自引:0,他引:1
The use of images, whether in routine maintenance, or postearthquake reconnaissance, has quickly become the preferred approach to record and archive the exterior damage of existing infrastructure. Postsurvey analysis of these images, coupled with careful record keeping, provide invaluable data regarding the health of a structure. However, often significant amounts of data are obtained, especially for large structures, such as bridges. Therefore an automated procedure, which reliably and robustly reports on damage observed from these images, with minimal human intervention, is desirable. To this end, in this work, we present a statistical-based method for conducting image analysis, specifically for the purpose of evaluating concrete damage (cracks, spalling, etc.). We illustrate the derivation of the method, which is grounded in Bayesian decision theory and subsequently present results of the analysis of images with discrete cracks to illustrate its promise. 相似文献
16.
多年来,在工程建设领域一直存在着钢筋混凝土结构的裂缝问题,这是个相当普遍的质量问题也是个迫切需要解决的技术难题,本人从设计、施工、材料等方面结合自己的实践经验分析了成因并提出防治办法。 相似文献
17.
Corrosion-induced cracks in reinforced concrete (RC) structures degrade the stiffness of the cover concrete. The stiffness degradation is mainly caused by the softening in the stress-strain relation in the cracked concrete. Limited efforts have been made to model the cracking and the corresponding effects on the cover concrete, despite of its importance in assessing and modeling the behavior of RC structures. This paper proposes a stiffness degradation factor to model the stiffness degradation of the cover concrete subject to cracking. The proposed factor is computed in terms of the cracking strain corresponding to the maximum opening of the concrete cracks based on an energy principle applied to a fractured RC structure. The time to cracking of the cover concrete is then determined as the time from the corrosion initiation needed by the crack front to reach the outer surface of the cover concrete. The proposed stiffness degradation factor and the method to compute the time to cracking are illustrated through two numerical examples. The times to cracking of the cover concrete that are predicted using the proposed method are in agreement with the measured values from laboratory experiments. 相似文献
18.
A three-dimensional damage model for concrete has been proposed in the preceding paper, Part I: Theory. This paper focuses on the application of the damage model for quasi-brittle materials such as concrete. The determination of model parameters for the evolution rule of damage is discussed. The model parameters to consider the frictional stress and the stiffness reduction under hydrostatic compression are also studied. For verification, the proposed model is applied to concrete subjected to confined compression, triaxial, loading, and cyclic loading. Consistent results, as compared with other researchers’ experimental data, were obtained, and the proposed model is considered worthy of further research work. 相似文献
19.
Caroline Le Bellégo Gilles Pijaudier-Cabot Bruno Gérard Jean-Fran?ois Dubé Laurent Molez 《Canadian Metallurgical Quarterly》2003,129(3):333-341
Long-term durability of concrete structures must be faced both from the point of view of cracking and physical degradations. In this paper, the relevance and the sensitivity of an existing constitutive relation aimed at modeling mechanical and chemical damage is examined. This constitutive relation is based on a scalar continuum damage model. The chemical degradation mechanism is calcium leaching. It is observed that the model predictions, i.e., the lifetime of cement-based beams subjected to leaching, are very sensitive on the tensile strength and fracture energy of the sound material. The existing model predicts the response of bending beams subjected to various states of leaching prior to any mechanical loading. The simulation of the size effect tests shows that the mechanical internal length and the damage threshold of the material cannot be considered to be constant. The internal length ought to decrease and the damage threshold should increase. 相似文献
20.
Impact-echo tests were performed on a precast, reinforced concrete bridge slab that was removed from a maintenance bridge built in 1953 in South Carolina. Impact-echo tests were first performed to nondestructively assess the initial condition and the distribution of damage throughout the slab by analyzing the variation in propagation wave velocity. It was found that the velocity varied by as much as 900?m/s throughout the slab. After the in-service condition was assessed, the slab was subjected to a full-scale static load test in the laboratory and impact-echo tests were again performed, this time to evaluate the initiation and progression of damage (stiffness loss and crack development) within the slab. After structural failure of the slab, a reduction in propagation wave velocity up to 6% was observed correlating to a reduction in slab stiffness. Cracks were detected within the concrete slab that were not visible from the surface. Areas with preexisting damage experienced more crack growth when subjected to the load test than those that were initially intact. Locations exhibiting stiffness loss, crack propagation, and localized damage can be differentiated such that the method can be used to make decisions between rehabilitating and replacing concrete bridge decks depending upon the severity of damage. 相似文献