首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
基于灰色理论预处理的神经网络机床热误差建模   总被引:7,自引:1,他引:7  
为最大限度减少热误差对数控机床加工精度的影响,尝试结合灰色理论和人工神经网络各自对数据处理的优点,提出一种基于灰色理论预处理的神经网络机床热误差补偿模型.在一台处于实际加工状态的数控车床上进行试验,采用数字式温度传感器测量经过优化选取的对热误差有关键影响的机床构件和加工环境的温度数据,采用非接触式位移传感器获得机床加工热误差数据,在不断调整灰色模型数据序列长度及神经网络权值、阈值的基础上,最终建立热误差补偿模型.通过与传统灰色模型和神经网络进行对比分析及试验论证表明,该补偿模型具有对原始温度和热误差数据要求低、计算简便、预测精度高、鲁棒性强等优点,可用于各种复杂实际加工场合中的数控机床热误差实时补偿.  相似文献   

2.
主轴热误差是影响机床精度的主要因素,建立准确的主轴热误差模型是进行机床误差补偿的关键。研究了温度测点优化和神经网络建模的方法,给出了粒子群优化灰色神经网络建模的流程。开展了主轴热误差热特性试验,得到了主轴热变形随主轴转速的变化规律。基于粒子群优化灰色神经网络建立了主轴轴向伸长和俯仰角热误差模型,并与灰色神经网络和BP网络的预测性能进行了对比,结果表明该模型可有效提高网络模型的收敛性和预测精度。  相似文献   

3.
五轴机床能对复杂的自由曲面进行加工。对五轴机床热误差进行控制,是提高其加工精度的关键所在。针对现有热误差建模方法预测精度较低、通用性和鲁棒性较差的问题,提出一种基于信息融合的五轴机床热误差建模方法。与传统建模方法相比,通过实时调整模型参数,该融合预测方法能够用于不同类型、不同操作条件的机床。将该方法应用于一台双转台五轴机床的实验研究,建立了该机床热误差的融合预测模型。实验结果表明,该方法能够提高热误差模型的预测精度及鲁棒性,从而提高五轴机床加工精度。  相似文献   

4.
为了降低机床热误差对主轴加工精度的影响,采用了混合粒子群算法优化BP神经网络结构,并对优化结果进行实验验证.引用了粒子群算法耦合遗传算法,给出BP神经网络结构简图,通过混合粒子群算法优化BP神经网络结构.构造机床热误差优化目标函数,采用混合粒子群算法优化目标函数,给出了混合粒子群算法优化BP神经网络流程图.建立BP神经网络热误差预测模型和BP神经网络热误差优化模型,采用三轴立式铣床对两种预测结果进行实验验证.实验结果表明:采用BP神经网络热误差预测模型,机床y轴、z轴预测结果与实验结果偏差最大值分别为6.9μm和6.7μm;采用BP神经网络热误差优化模型,机床y轴、z轴预测结果与实验结果偏差最大值分别为3.3μm和3.5μm.采用混合粒子群算法优化BP神经网络结构,能够提高机床热误差预测精度.  相似文献   

5.
在综合考虑机床动静态多种误差源的基础上,建立了各运动轴伺服运动模型和多体联动模型,给出了刀具的实际运动位置和姿态,基于包络理论求解了曲面加工实际成形面,对比理想数学模型,对加工误差进行了综合预测和评判。以复杂非可展曲面--S试件为例,给出了S试件的铣削精度构建方法,分析了机床动态因素(位置环、速度环等)对零件铣削精度的影响,并通过切削实验后的数据回归分析予以验证。建立了基于神经网络的机床铣削误差辨识模型,用于评估机床加工后的状态。该平台的搭建为实现大型、关键零件的加工精度预测和保障提供了技术支撑。   相似文献   

6.
热误差严重影响着机床的加工精度,对机床关键部件进行热特性分析是开发精密机床的重要环节。通过测量包括数控机床的特殊位置温度和定位误差在内的热特性,研究了温升与定位误差之间的关系,提出了一种基于贝叶斯神经网络的热误差建模方法。通过K-means聚类和相关系数法来选择温度敏感点,可以有效地抑制温度测量点之间的多重共线性问题。结果表明:通过使用贝叶斯神经网络能提高机床88.015 9%的精度,比BP神经网络高出15.763 8%,与BP神经网络模型相比,贝叶斯神经网络具有更加优良预测性能。贝叶斯神经网络模型为降低机床热误差的影响提供了新思路。  相似文献   

7.
为最大限度减少热误差对多轴联动机床加工精度的影响,综合遗传算法全局收敛性和人工神经网络局部搜索快速性的优点,提出一种基于遗传算法优化BP网络隐层节点数及初始值的机床热误差建模方法。运用Matlab-GUI工具开发了具有通用性的交互式多轴机床热误差建模仿真系统,通过与传统的BP神经网络进行对比分析及试验论证,证明该模型预测精度更高、通用性强。  相似文献   

8.
基于遗传算法优化小波神经网络数控机床热误差建模   总被引:2,自引:0,他引:2  
数控机床的热误差已经成为影响其加工精度的一个关键因素,为最大限度提高数控机床热误差补偿的精度和效率,结合遗传算法自适应全局优化搜索能力和小波神经网络良好的时频局部特性的优点,提出一种基于遗传算法优化小波神经网络的机床热误差补偿模型。以某型号五轴摆动卧式加工中心为试验对象,以机床温度变量和热误差为数据输入样本,建立小波神经网络模型热误差预测模型,然后用遗传算法优化小波神经网络权值、阈值,最终建立热误差预测模型。通过与传统人工神经网络和普通小波神经网络进行对比分析及试验论证表明,该补偿模型具有精度高、抗扰动能力和鲁棒性强等优点,有望在实际加工场合的数控机床的热误差预测和补偿研究中得到更大的推广应用。  相似文献   

9.
针对机床主轴热性能对加工精度产生影响的问题,对机床主轴热误差建模方向进行了试验研究。以数控磨床主轴为研究对象,通过热特性试验获得了阶梯转速下的温度变化数据和热误差数据,对温度数据进行了模糊聚类分组,并采用相关系数法选出了温度敏感测点;通过对灰色神经网络初始参数进行优化,建立了遗传算法(GA)优化的灰色神经网络热误差预测模型;在该模型中,以灰色神经网络的预测输出和实际值的绝对误差作为遗传算法适应度函数,以平均相对误差作为预测模型的评价标准,并与灰色神经网络、BP神经网络预测结果进行了对比。研究结果表明:该预测模型具有更高的预测精度,通过GA对灰色神经网络的初始参数进行优化,可有效地提高网络的预测精度,更好地用于热误差补偿系统。  相似文献   

10.
预行程误差的预测和补偿能够大大提高加工精度在线检测系统的测量精度.提出了一种基于BP神经网络的检测误差预测新方法,建立了一个基于BP神经网络的在线检测系统预行程误差预测模型,通过实验数据对该网络进行训练,并将训练好的神经网络应用到实际加工零件的误差预测和补偿.为了验证该方法的有效性,以一圆柱零件的圆度误差检测为例,对其加工精度的在线测量进行了预行程误差的预测与补偿,经与CMM检测结果的对比,说明了该方法的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号