首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on the noise performance of low power 0.25 μm gate ion implanted D-mode GaAs MESFETs suitable for wireless personal communication applications. The 0.25 μm×200 μm D-mode MESFET has a ft of 18 GHz and fmax of 33 GHz at a power level of 1 mW (power density of 5 mW/mm). The noise characteristics at 4 GHz for the D-mode MESFET are Fmin=0.65 dB and Gassoc =13 dB at 1 mW. These results demonstrate that the GaAs D-mode MESFET is also an excellent choice for low power personal communication applications  相似文献   

2.
RF and microwave noise performances of strained Si/Si0.58 Ge0.42 n-MODFETs are presented for the first time. The 0.13 μm gate devices have de-embedded fT=49 GHz, fmax =70 GHz and a record intrinsic gm=700 mS/mm. A de-embedded minimum noise figure NFmin=0.3 dB with a 41 Ω noise resistance Rn and a 19 dB associated gain Gass are obtained at 2.5 GHz, while NFmin=2.0 dB with Gass=10 dB at 18 GHz. The noise parameters measured up to 18 GHz and from 10 to 180 mA/mm with high gain and low power dissipation show the potential of SiGe MODFETs for mobile communications  相似文献   

3.
The fabrication and characterization of a double pulse-doped (DPD) GaAs MESFET grown by organometallic vapor phase epitaxy (OMVPE) are reported. The electron mobility of a DPD structure with a carrier concentration of 3×1018/cm3 was 2000 cm2/V-s, which is about 20% higher than that of a pulse-doped (PD) structure. Implementing the DPD structure instead of the conventional PD structure as a GaAs MESFET channel, the drain breakdown voltage, current gain cutoff frequency, and maximum stable gain (MSG) increase. The maximum transconductance of 265 mS/mm at a drain current density of 600 mA/mm, a current gain cutoff frequency of 40 GHz, and an MSG of 11 dB at 18 GHz were obtained for a 0.3 μm n+ self-aligned DPD GaAs MESFET  相似文献   

4.
This paper reports on SiGe NPN HBTs with unity gain cutoff frequency (fT) of 207 GHz and an fMAX extrapolated from Mason's unilateral gain of 285 GHz. fMAX extrapolated from maximum available gain is 194 GHz. Transistors sized 0.12×2.5 μm2 have these characteristics at a linear current of 1.0 mA/μm (8.3 mA/μm2). Smaller transistors (0.12×0.5 μm2) have an fT of 180 GHz at 800 μA current. The devices have a pinched base sheet resistance of 2.5 kΩ/sq. and an open-base breakdown voltage BVCEO of 1.7 V. The improved performance is a result of a new self-aligned device structure that minimizes parasitic resistance and capacitance without affecting fT at small lateral dimensions  相似文献   

5.
MESFET's were fabricated using 4H-SiC substrates and epitaxy. The D.C., S-parameter, and output power characteristics of the 0.7 μm gate length, 332 μm gate width MESFET's were measured. At νds =25 V the current density was about 300 mA/mm and the maximum transconductance was in the range of 38-42 mS/mm. The device had 9.3 dB gain at 5 GHz and fmax=12.9 GHz. At Vds=54 V the power density was 2.8 W/mm with a power added efficiency=12.7%  相似文献   

6.
The dc and microwave results of Si0.2Ge0.8/Si0.7Ge0.3 pMODFETs grown on silicon-on-sapphire (SOS) substrates by ultrahigh vacuum chemical vapor deposition are reported. Devices with Lg=0.1 μm displayed high transconductance (377 mS/mm), low output conductance (25 mS/mm), and high gate-to-drain breakdown voltage (4 V). The dc current-voltage (I-V) characteristics were also nearly identical to those of control devices grown on bulk Si substrates. Microwave characterization of 0.1×50 μm2 devices yielded unity current gain (fT) and unilateral power gain (f max) cutoff frequencies as high as 50 GHz and 116 GHz, respectively. Noise parameter characterization of 0.1×90 μm2 devices revealed minimum noise figure (Fmin) of 0.6 dB at 3 GHz and 2.5 dB at 20 GHz  相似文献   

7.
Doped channel pseudomorphic In0.49Ga0.51P/In 0.20Ga0.80As/GaAs heterostructure field effect transistors have been fabricated on GaAs substrate with 0.25 μm T-gates and self-aligned ohmic contact enhancement. By introducing the channel doping and reducing the series resistances, a high current density of 500 mA/mm is obtained in combination with cut off frequencies of fT=68 GHz and fmax=160 GHz. The channel doping did not affect the RF-performance of the device essentially, which is additionally reflected in noise figures below 1.0 dB with an associated gain of 14.5 dB at 12 GHz  相似文献   

8.
A double-pulse-doped InAlGaAs/In0.43Ga0.57As metamorphic high electron mobility transistor (MHEMT) on a GaAs substrate is demonstrated with state-of-the-art noise and power performance, This 0.15 μm T-gate MHEMT exhibits high on- and off-state breakdown (Vds>6 V and Vdg>13 V, respectively) which allows biasing at Vds>5 V. The 0.6 mm device shows >27 dBm output power (850 mW/mm) at 35 GHz-the highest reported power density of any MHEMT. Additionally, a smaller gate periphery 2×50 μm (0.1 mm) 43% MHEMT exhibits a Fmin=1.18 dB and 10.7 dB associated gain at 25 GHz, and also is the first noise measurement of a -40% In MHEMT. A double recess process with selective etch chemistries provides for high yields  相似文献   

9.
A T-shaped quarter-micron gate structure composed of WSix /Ti/Pt/Au has been developed for low-noise AlGaAs/GaAs HEMTs. The gate resistance Rg was reduced to 0.3 Ω for devices with 200 μm-wide gates despite using WSix, and the source resistance Rs reached 0.28 Ω mm by minimising the source-gate distance using a self-alignment technique. This HEMT exhibited the lowest reported noise figure of 0.54 dB with an associated gain of 12.1 dB at 12 GHz  相似文献   

10.
We report for the first time the development of state-of-the-art SiC MESFETs on high-resistivity 4H-SiC substrates. 0.5 μm gate MESFETs in this material show a new record high fmax of 42 GHz and RF gain of 5.1 dB at 20 GHz. These devices also show simultaneously high drain current, and gate-drain breakdown voltage of 500 mA/mm, and 100 V, respectively showing their potential for RF power applications  相似文献   

11.
Very high performance InGaP/InGaAs/GaAs PHEMTs will be demonstrated. The fabricated InGaP gated PHEMTs devices with 0.25 × 160/cm2 and 0.25 × 300 μm2 of gate dimensions show 304 mA/mm and 330 mA/mm of saturation drain current at VGS = 0 V, VDS = 2 V, and 320 mS/mm and 302 mS/mm of extrinsic transconductances, respectively. Noise figures for 160 μm and 300 μm gate-width devices at 12 GHz are measured to be 0.46 dB with a 13 dB associated gain and 0.49 dB with a 12.85 dB associated gain, respectively. With such a high gain and low noise, the drain-to-gate breakdown voltage can be larger than 11 V. Standard deviation in the threshold voltage of 22 mV for 160 μm gate-width devices across a 4-in wafer can be achieved using a highly selective wet recess etching process. Good thermal stability of these InGaP gated PHEMTs is also presented  相似文献   

12.
We report the first demonstration of W-band metamorphic HEMTs/LNA MMICs using an AlGaAsSb lattice strain relief buffer layer on a GaAs substrate. 0.1×50 μm low-noise devices have shown typical extrinsic transconductance of 850 mS/mm with high maximum drain current of 700 mA/mm and gate-drain breakdown voltage of 4.5 V. Small-signal S-parameter measurements performed on the 0.1-μm devices exhibited an excellent fT of 225 GHz and maximum stable gain (MSG) of 12.9 dB at 60 GHz and 10.4 dB at 110 GHz. The three-stage W-band LNA MMIC exhibits 4.2 dB noise figure with 18 dB gain at 82 GHz and 4.8 dB noise figure with 14 dB gain at 89 GHz, The gain and noise performance of the metamorphic HEMT technology is very close to that of the InP-based HEMT  相似文献   

13.
This paper describes a new approach to fabricating InGaP/GaAs heterojunction bipolar transistors (HBT's) with a high cutoff frequency (fT), high maximum oscillation frequency (fmax), and low external collector capacitance (Cbc). To attain a high fT and fmax, a heavy carbon-doping (1.3×1020 cm-3) technique was used with a thin (30-nm-thick) GaAs base layer, while for low Cbc, low-temperature gas-source molecular-beam epitaxial growth on SiO2 -patterned substrates was used to bury high-resistance polycrystalline GaAs under the base electrode. An fT of 120 GHz and an fmax of 230 GHz were achieved for three parallel 0.7×8.5 μm HBT's with an undoped-collector structure, and an f T of 170 GHz and an fmax of 160 GHz were obtained for a single 0.9×10 μm HBT with a ballistic-collection-transistor structure. Compared to HBT's without buried poly-GaAs, the maximum stable gain was improved by 1.2 dB in the 0.7×8.5 μm HBT and by 2.3 dB in the 0.9×10 μm HBT due to the reduction in Cbc. These results show the high potential of the proposed HBT's for high-speed digital and broadband-amplifier applications  相似文献   

14.
The fabrication and characterization of a 0.25-μm-gate, ion-implanted GaAs MESFET with a maximum current-gain cutoff frequency ft of 126 GHz is reported. Extrapolation of current gains from bias-dependent S-parameters at 70-100% of I dss yields f1's of 108-126 GHz. It is projected that an f1 of 320 GHz is achievable with 0.1-μm-gate GaAs MESFETs. This demonstration of f1's over 100 GHz with practical 0.25-μm gate length substantially advances the high-frequency operation limits of short-gate GaAs MESFETs  相似文献   

15.
SiNx/InP/InGaAs doped channel passivated heterojunction insulated gate field effect transistors (HIGFETs) have been fabricated for the first time using an improved In-S interface control layer (ICL). The insulated gate HIGFETs exhibit very low gate leakage (10 nA@VGS =±5 V) and IDS (sat) of 250 mA/mm. The doped channel improves the DC characteristics and the HIGFETs show transconductance of 140-150 mS/mm (Lg=2 μm), ft of 5-6 GHz (Lg=3 μm), and power gain of 14.2 dB at 3 GHz. The ICL HIGFET technology is promising for high frequency applications  相似文献   

16.
A monolithically integrated photoreceiver using an InAlAs/InGaAs HBT-based transimpedance amplifier has been fabricated and characterized. The p-i-n photodiode is implemented using the base-collector junction of the HBT. The 5 μm×5 μm emitter area transistors have self-aligned base metal and non-alloyed Ti/Pt/Au contacts. Discrete transistors demonstrated fT and fmax of 54 GHz and 51 GHz, respectively. The amplifier demonstrated a -3 dB transimpedance bandwidth of 10 GHz and a gain of 40 dBΩ. The integrated photoreceiver with a 10 μm×10 μm p-i-n photodiode showed a -3 dB bandwidth of 7.1 GHz  相似文献   

17.
The authors report on advanced ion implantation GaAs MESFET technology using a 0.25-μm `T' gate for super-low-noise microwave and millimeter-wave IC applications. The 0.25×200-μm-gate GaAs MESFETs achieved 0.56-dB noise figure with 13.1-dB associated gain at 50% IDSS and 0.6 dB noise figure with 16.5-dB associated gain at 100% IDSS at a measured frequency of 10 GHz. The measured noise figure is comparable to the best noise performance of AlGaAs/GaAs HEMTs and AlGaAs/InGaAs/GaAs pseudomorphic HEMTs  相似文献   

18.
Excellent long term reliability InGaP/GaAs heterojunction bipolar transistors (HBT) grown by metalorganic chemical vapor deposition (MOCVD) are demonstrated. There were no device failures (T=10000 h) in a sample lot of ten devices (L=6.4 μm ×20 μm) under moderate current densities and high-temperature testing (Jc=25 kA/cm 2, Vce=2.0 V, Junction Temp =264°C). The dc current gain for large area devices (L=75 μm ×75 μm) at 1 kA/cm2 at a base sheet resistance of 240 ohms/sq (4×10 19 cm-3@700 Å) was over 100. The dc current gain before reliability testing (L=6.4 μm ×10 μm) at 0.8 kA/cm2 was 62. The dc current gain (0.8 kA/cm2) decreased to 57 after 10000 h of reliability testing. The devices showed an fT=61 GHz and fmax=103 GHz. The reliability results are the highest ever achieved for InGaP/GaAs HBT and these results indicate the great potential of InGaP/GaAs HBT for numerous low- and high-frequency microwave circuit applications. The reliability improvements are probably due to the initial low base current at low current densities which result from the low surface recombination of InGaP and the high valence band discontinuity between InGaP and GaAs  相似文献   

19.
The design, fabrication, and characterization of 0.1 μm AlSb/InAs HEMT's are reported. These devices have an In0.4Al 0.6As/AlSb composite barrier above the InAs channel and a p + GaSb layer within the AlSb buffer layer. The HEMT's exhibit a transconductance of 600 mS/mm and an fT of 120 GHz at VDs=0.6 V. An intrinsic fT of 160 GHz is obtained after the gate bonding pad capacitance is removed from an equivalent circuit. The present HEMT's have a noise figure of 1 dB with 14 dB associated gain at 4 GHz and VDs=0.4 V. Noise equivalent circuit simulation indicates that this noise figure is primarily limited by gate leakage current and that a noise figure of 0.3 dB at 4 GHz is achievable with expected technological improvements. HEMT's with a 0.5 μm gate length on the same wafer exhibit a transconductance of 1 S/mm and an intrinsic fTLg, product of 50 GHz-μm  相似文献   

20.
Ion-implanted GaAs MESFETs with half-micrometer gate length have been fabricated on 3-in-diameter GaAs substrates. At 16 GHz, a minimum noise figure of 0.8 dB with an associated gain of 6.3 dB has been measured. This noise figure is believed to be the lowest ever reported for 0.5- and 0.25-μm ion-implanted MESFETs, and is comparable to that for 0.25-μm HEMTs at this frequency. By using the Fukui equation and the fitted equivalent circuit model, a Kf factor of 1.4 has been obtained. These results clearly demonstrate the potential of ion-implanted MESFET technology for K-band low-noise integrated circuit applications  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号