共查询到18条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
5.
通过溶胶-凝胶法,以正硅酸乙酯(TEOS)和十七氟癸基三乙氧基硅烷(PFDTES)为前驱体,在酸性和洁净室条件下制备了十七氟癸基修饰的SiO2膜材料,分别通过动态光散射技术、接触角测量、红外光谱以及热重分析等测试手段对溶胶的粒径分布及膜材料的疏水性能进行了表征,并深入研究了十七氟癸基修饰后膜材料的氢气渗透和分离性能.结果表明,当摩尔比n(PFDTES)/n(TEOS)=0.2时,溶胶的粒径狭窄分布在3.9nm.十七氟癸基已成功修饰到SiO2膜材料中,十七氟癸基的修饰使得膜材料从亲水性变为疏水性,在上述摩尔比例下,膜材料对水的接触角达到112.0°±0.6°.H2的单组分渗透率随温度的升高而增大,300℃时达到10.00×10-7 mol/(m2·s·Pa),H2/CO2的单组分理想分离系数及双组分分离系数分别达到6.10和13.30,均高于其Knudsen扩散分离因子(4.69),H2在膜材料中的输运主要遵循活化扩散机理. 相似文献
6.
7.
采用KH-570代替部分TEOS为前驱物,共水解缩聚反应制得疏水性SiO2膜,通过IR、DTG、SEM、接触角测试仪等手段对KH-570修饰后的SiO2膜进行表征,并对CH4和CO2渗透和分离进行研究。实验结果表明,修饰后(0.8KH-570)SiO2膜接触角达到94.2°,红外光谱分析表明修饰后SiO2膜疏水性增强;(0.8KH-570)SiO2膜具有完整性及在400℃水热稳定性;压差30kPa,分离因子随涂膜次数增加先增大后减小,涂膜5次达最大值2.13,超越了努森扩散理论分离因子1.66,此时分离效果好;对于涂膜5次的SiO2膜,CH4渗透通量随压差增加呈现非线性微增趋势,CH4/CO2分离因子几乎不变。 相似文献
8.
微孔二氧化硅膜的制备、氢气分离以及水热稳定性研究 总被引:9,自引:0,他引:9
利用溶胶-凝胶法在Υ-Al2O3/α-Al2O3多孔支撑体上合成了微孔二氧化硅膜,并用IR、TG、FESEM、N2吸附以及气体渗透等手段对二氧化硅膜进行了研究.结果表明,200℃时H2的渗透率达到2.3×10-7mol·m-2·Pa-1·s-1,H2/CO2的分离系数为8.0,然而当二氧化硅膜长期暴露于潮湿环境时,由于水气与孔表面羟基相互作用引起二氧化硅膜孔结构的崩溃,最终导致H2渗透率和H2/CO2分离系数剧烈下降. 相似文献
9.
10.
以1,2-二(三乙氧基硅基)乙烷(BTESE)为前驱体、PdCl2为钯源, 制备Pd掺杂有机无机杂化SiO2(POS)溶胶, 涂膜后在水蒸气氛围中煅烧, 制备得到POS膜。采用X射线衍射(XRD)、傅里叶变换红外光谱(FT-IR)、N2吸附-脱附和透射电子显微镜(TEM)对POS粉体的微观结构进行表征。考察了钯/硅摩尔比(n(Pd/Si)=0.1、0.5和1)对POS膜的气体分离性能与水热稳定性能的影响。结果表明: 随着Pd掺杂量的增加, POS膜的H2渗透率逐渐增大, H2/CO2的理想选择性逐渐下降。经100 kPa水蒸气处理180 h后, 采用n (Pd/Si)=1制备的POS膜的H2渗透率达到1.62× 10-7 mol·m-2·s-1·Pa-1, H2/CO2理想分离因子达到13.6, 表明该膜具有较好的H2渗透性能、H2/CO2分离性能和水热稳定性能。 相似文献
11.
12.
13.
14.
15.
16.
介绍了气体分离膜的基本原理及在炼厂、化工厂尾气中回收氢气的应用.列举了我国石化企业应用的实例,并提出进一步推广应用的建议. 相似文献
17.