共查询到20条相似文献,搜索用时 15 毫秒
1.
M Fukushi N Amizuka K Hoshi H Ozawa H Kumagai S Omura Y Misumi Y Ikehara K Oda 《Canadian Metallurgical Quarterly》1998,246(3):613-618
One point mutation which converts glycine-317 to aspartate of tissue-nonspecific alkaline phosphatase (TNSALP) was reported to be associated with lethal hypophosphatasia (Greenberg, C. R., et al. Genomics 17, 215-217, 1993). In order to define the molecular defect of TNSALP underlying the pathogenesis of hypophosphatasia, we have examined the biosynthesis of TNSALP with a Gly317-->Asp substitution. When expressed in COS-1 cells, the mutant did not exhibit alkaline phosphatase activity at all, indicating that the replacement of glycine-317 with aspartate abolishes the catalytic activity of TNSALP. Pulse-chase experiments showed that the newly synthesized mutant failed to acquire Endo H-resistance and to reach the cell surface. Interestingly, this TNSALP mutant was found to form a disulfide-bonded high-molecular-mass aggregate and was rapidly degraded within the cell, though the mutant protein was modified by glycosylphosphatidylinositol (GPI). Lactacystin, an inhibitor of the proteasome, obstructed the degradation of the mutant protein, suggesting the involvement of proteasome as a part of quality control of TNSALP. 相似文献
2.
G Cai T Michigami T Yamamoto N Yasui K Satomura M Yamagata M Shima S Nakajima S Mushiake S Okada K Ozono 《Canadian Metallurgical Quarterly》1998,83(11):3936-3942
Hypophosphatasia is associated with a defect of the tissue-nonspecific alkaline phosphatase (TNSALP) gene. The onset and clinical severity are usually correlated in hypophosphatasia; patients with perinatal hypophosphatasia die approximately at the time of birth. In contrast, we describe a male neonatal patient with hypophosphatasia who had no respiratory problems and survived. He was compound heterozygous for the conversion of Phe to Leu at codon 310 (F310L) and the deletion of a nucleotide T at 1735 (delT1735), causing the frame shift with the result of the addition of 80 amino acids at the C-terminal of the protein. Because the C-terminal portion of TNSALP is known to be important for TNSALP to bind to the plasma membrane, the localization of wild-type and mutated TNSALP proteins was analyzed using green fluorescent protein chimeras. The expression vectors containing the complementary DNA of fusion proteins consisting of signal peptide, green fluorescent protein, and wild-type or mutated TNSALP, caused by delT1735 or F310L mutation, were introduced transiently or stably in Saos-2 cells. The delT1735 mutant failed to localize at the cell surface membrane, whereas the wild-type and the F310L mutants were located in the plasma membrane and cytoplasm. The assay for enzymatic activity of TNSALP revealed that the delT1735 mutant lost the activity and that the F310L mutant exhibited an enzymatic activity level that was 72% of the normal level. The F310L mutation was also detected in another neonatal patient with relatively mild (nonlethal) hypophosphatasia (reported in J Clin Endocrinol Metab, 81:4458-4461, 1996), suggesting that residual ALP activity of the F310L mutant contributes to the less severe phenotype. The patient is unique, with respect to a discrepancy between onset and clinical severity in hypophosphatasia. 相似文献
3.
M Goseki-Sone H Orimo T Iimura H Miyazaki K Oda H Shibata M Yanagishita Y Takagi H Watanabe T Shimada S Oida 《Canadian Metallurgical Quarterly》1998,13(12):1827-1834
Hypophosphatasia (HOPS) is an inherited disorder characterized by defects in skeletal mineralization due to the deficiency of tissue-nonspecific alkaline phosphatase (TNSALP). To date, various mutations in the TNSALP gene have been identified. Especially, a deletion of T at position 1735 (1735T-del) located in exon 12 has been detected in three genetically unrelated Japanese patients, which seems to be one of the hot spots among the causative mutations in Japanese HOPS patients. 1735T-del causes a frame shift downstream from codon 503 (Leu), and consequently the normal termination codon at 508 is eliminated. Since a new inframe termination codon appears at codon 588 in the mutant DNA, the resultant protein is expected to have 80 additional amino acids. Expression of the mutant TNSALP gene using COS-1 cells demonstrated that the protein translated from the mutant 1735T-del had undetectable ALP activity, and its molecule size was larger than normal, as expected. Interestingly, an immunoprecipitation study of patients' sera using antibody against TNSALP revealed an abnormal protein which corresponded in size to the mutated TNSALP expressed by COS-1 cells, suggesting that the abnormal TNSALP is made by HOPS patients. The detection of TNSALP in cells transfected with 1735T-del using an immunofluorescent method exhibited only a faint signal on the cell surface, but an intense intracellular fluorescence after permeabilization. 相似文献
4.
5.
MD Feese HR Faber CE Bystrom DW Pettigrew SJ Remington 《Canadian Metallurgical Quarterly》1998,6(11):1407-1418
BACKGROUND: Glycerol kinase (GK) from Escherichia coli is a velocity-modulated (V system) enzyme that has three allosteric effectors with independent mechanisms: fructose-1,6-bisphosphate (FBP); the phosphocarrier protein IIAGlc; and adenosine nucleotides. The enzyme exists in solution as functional dimers that associate reversibly to form tetramers. GK is a member of a superfamily of ATPases that share a common ATPase domain and are thought to undergo a large conformational change as an intrinsic step in their catalytic cycle. Members of this family include actin, hexokinase and the heat shock protein hsc70. RESULTS: We report here the crystal structures of GK and a mutant of GK (Ala65-->Thr) in complex with glycerol and ADP. Crystals of both enzymes contain the same 222 symmetric tetramer. The functional dimer is identical to that described previously for the IIAGlc-GK complex structure. The tetramer interface is significantly different, however, with a relative 22.3 degrees rotation and 6.34 A translation of one functional dimer. The overall monomer structure is unchanged except for two regions: the IIAGlc-binding site undergoes a structural rearrangement and residues 230-236 become ordered and bind orthophosphate at the tetramer interface. We also report the structure of a second mutant of GK (IIe474-->Asp) in complex with IIAGlc; this complex crystallized isomorphously to the wild type IIAGlc-GK complex. Site-directed mutants of GK with substitutions at the IIAGlc-binding site show significantly altered kinetic and regulatory properties, suggesting that the conformation of the binding site is linked to the regulation of activity. CONCLUSIONS: We conclude that the new tetramer structure presented here is an inactive form of the physiologically relevant tetramer. The structure and location of the orthophosphate-binding site is consistent with it being part of the FBP-binding site. Mutational analysis and the structure of the IIAGlc-GK(IIe474-->Asp) complex suggest the conformational transition of the IIAGlc-binding site to be an essential aspect of IIAGlc regulation. 相似文献
6.
CR Greenberg CL Taylor JC Haworth LE Seargeant S Philipps B Triggs-Raine BN Chodirker 《Canadian Metallurgical Quarterly》1993,17(1):215-217
Most drugs induce conditioned taste aversions and are therefore commonly supposed to produce nausea or sickness. Paradoxically, some drugs appear to lose induction capability when made to serve as a cue for a second drug that produces more severe sickness, perhaps through selective association with a hypothetical homeostatic or antisickness aftereffect of sickness. Using drug-drug pairings had made antisickness conditioning theory difficult to validate. We report here that rotation serves in lieu of a drug cue in rats. Rotation-drug pairings eliminate drug interactions and enable the sorts of parametric manipulations required to validate the theory. By postulating a common sickness mechanism to explain both taste aversion and aversion failure, the theory places the phenomenon within an adaptive evolutionary framework. Successful application could yield a direct countermeasure to severe nausea in clinical settings. 相似文献
7.
8.
The total plasma alkaline phosphatase level has long been recognised as an indicator of osteoblastic activity, but lack of specificity makes it an insensitive index of the progress of disease and the response to treatment. Selective precipitation by wheatgerm lectin allows measurement of the plasma bone-specific alkaline phosphatase. We measured the plasma levels of this isoenzyme in 170 normal Chinese adolescents and adults, in 49 adults with fractures of a long bone, in 15 patients with osteosarcoma and in 38 patients with osteolytic metastases. The enzyme activity was also determined in 39 patients with liver disease. Of the patients with fractures, 94% had increased plasma activity during the healing process. The level was also increased in those with osteosarcoma but not in those with osteolytic bone metastases. There was no significant increase in activity in the patients with liver disease. We conclude that the plasma bone-specific alkaline phosphatase activity is a sensitive and reliable measure of osteoblastic activity. 相似文献
9.
Using HeLa TCRC-1, a cell line which is monophenotypic with respect to the Regan isoenzyme of alkaline phosphatase, we have examined the factors which influence its expression in relation to events of the cell cycle. DNA synthesis is not required for hormone induction of the Regan isoenzyme as in the presence of hydroxyurea, a specific inhibitor of DNA synthesis, we found induction to occur. Additionally, when partially synchronised cells were allowed to leave the S period prior to hormone treatment, and hydroxyurea was added to prevent cells from entering the next S period, hormone induction of the Regan isoenzyme was still observed. This indicates that initiation of expression of hormone-induced carcinoplacental alkaline phosphatase occur prior to the DNA synthetic phase of the cell cycle. We propose a hypothetical two-step mechanism of hormone induction to interpret the present findings in relation to previous results. 相似文献
10.
11.
SS Mirshahi KC Lounes H Lu E Pujade-Lauraine Z Mishal J Bénard A Bernadou C Soria J Soria 《Canadian Metallurgical Quarterly》1997,411(2-3):322-326
The urokinase receptor (u-PAR), a protein anchored to cell membrane by a glycosyl phosphatidylinositol, plays a central role in cancer cell invasion and metastasis by binding urokinase plasminogen activator (u-PA), thereby facilitating plasminogen activation. Plasmin can promote cell migration either directly or by activating metalloproteinases that degrade some of the components of the extra cellular matrix. However, the IGR-OV1-Adria cell line contains the u-PAR but does not migrate even in the presence of exogenous u-PA, although the parental IGR-OV1 cell line migrates normally in the presence of u-PA. We therefore investigated the role of cell signalling for u-PA induced cell locomotion. We show that cell migration induced by u-PA-u-PAR complex is always associated with tyrosine kinase activation for the following reasons: (1) the blockade of the u-PAR by a chimeric molecule (albumin-ATF) inhibits not only the u-PA-induced cell migration, but also the signalling in IGR-OV1 line; (2) the binding of u-PA to u-PAR on non-migrating IGR-OV1-Adria cells was not associated with tyrosine kinase activation; (3) the inhibition of tyrosine kinase also blocked cell migration of IGR-OV1. Therefore tyrosine kinase activation seems to be essential for the u-PA-induced cell locomotion possibly by the formation of a complex u-PAR-u-PA with a protein whose transmembrane domain can ensure cell signalling. Thus, IGR-OV1 and IGR-OV1-Adria cell lines represent a good model for the analysis of the mechanism of u-PA-u-PAR-induced cell locomotion. 相似文献
12.
The modulation of intracellular pH by activation of metabotropic glutamate receptors was investigated in cultured and acutely dissociated rat astrocytes. One minute superfusion of 100 microM (1S,3R)-1-aminocyclopentane-1, 3-dicarboxcylic acid (ACPD) evoked an alkaline shift of 0.13 +/- 0. 013 (mean +/- SE) and 0.16 +/- 0.03 pH units in cultured (cortical or cerebellar) and acutely dissociated cortical astrocytes, respectively. Alkalinizations were elicited by concentrations of ACPD as low as 1 muM. The ACPD response was mimicked by S-3-hydroxyphenylglycine (3-HPG) and by (s)-4-carboxy-3-hydroxyphenylglycine (4C-3HPG) but was not blocked by alpha-methyl-4-carboxyphenylglycine (MCPG) or (RS)-1-aminoindan-1, 5-dicarboxcylic acid (AIDA), features consistent with an mGluR5 receptor-mediated mechanism. The ACPD-evoked alkaline shift was insensitive to amiloride, 4,4'-diisothiocyanostilbene-2, 2'-disulfonic acid (DIDS), and the v-type ATPase inhibitors 7-chloro-4-nitrobenz-2-oxa-1,3-diazol (NBD-Cl), bafilomycin, and concanamycin. The alkaline response persisted in Na+- or Cl--free saline, but was reversibly blocked in bicarbonate-free, N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES)-buffered solutions. A bicarbonate-dependent and Na+-independent alkaline shift could also be elicited by either 3 mM caffeine or 1 muM ionomycin. These data suggest that a rise in cytosolic Ca2+ activity is instrumental in triggering the alkalinizing mechanism and that this response is independent of the classic depolarization-induced alkalinization mediated by electrogenic sodium-bicarbonate cotransport. 相似文献
13.
Catalase catalyzed the peroxynitrite-mediated nitration of 4-hydroxyphenylacetic acid. The curve for the pH dependence of nitration was similar to that for the reaction between peroxynitrite and phenol. Cyanide, azide, and 3-amino-1,2,4-triazole inhibited the nitration in a dose-dependent way. When catalase was mixed with peroxynitrite, Compound I was detected as an intermediate. Because azide was an electron donor for the peroxidatic action of catalase, and because 3-amino-1,2,4-triazole inhibited catalase activity by binding with Compound I, peroxynitrite-mediated phenolic nitration was probably accompanied by Compound I formation. Both catalase and superoxide dismutase protected Escherichia coli from peroxynitrite toxicity. 相似文献
14.
15.
16.
To identify components involved in nuclear protein import, we used a genetic selection to isolate mutants that mislocalized a nuclear-targeted protein. We identified temperature-sensitive mutants that accumulated several different nuclear proteins in the cytoplasm when shifted to the semipermissive temperature of 30 degrees C; these were termed npl (nuclear protein localization) mutants. We now present the properties of yeast strains bearing mutations in the NPL4 gene and report the cloning of the NPL4 gene and the characterization of the Np14 protein. The npl4-1 mutant was isolated by the previously described selection scheme. The second allele, npl4-2, was identified from an independently derived collection of temperature-sensitive mutants. The npl4-1 and npl4-2 strains accumulate nuclear-targeted proteins in the cytoplasm at the nonpermissive temperature consistent with a defect in nuclear protein import. Using an in vitro nuclear import assay, we show that nuclei prepared from temperature-shifted npl4 mutant cells are unable to import nuclear-targeted proteins, even in the presence of cytosol prepared from wild-type cells. In addition, npl4-2 cells accumulate poly(A)+ RNA in the nucleus at the nonpermissive temperature, consistent with a failure to export mRNA from the nucleus. The npl4-1 and npl4-2 cells also exhibit distinct, temperature-sensitive structural defects: npl4-1 cells project extra nuclear envelope into the cytoplasm, whereas npl4-2 cells from nuclear envelope herniations that appear to be filled with poly(A)+ RNA. The NPL4 gene encodes an essential M(r) 64,000 protein that is located at the nuclear periphery and localizes in a pattern similar to nuclear pore complex proteins. Taken together, these results indicate that this gene encodes a novel nuclear pore complex or nuclear pore complex-associated component required for nuclear membrane integrity and nuclear transport. 相似文献
17.
18.
19.
20.
L McCuaig 《Canadian Metallurgical Quarterly》1976,6(4):295-306
Certain factors were found to prevent quantitative recovery of soluble alkaline phosphatase from homogenates of chick duodenal mucosa during treatment with n-butanol. Divalent cations such as calcium, manganese and lead interfered when present at 0.1-0.2 mM. Magnesium and zinc were found to reduce enyme recovery when present at 1.0 mM during extraction. These metals had little effect on enzyme activity per se, whether added to the homogenates or enzyme extracts before dilution for assay. However, lead acetate may have a protective or activating effect on phosphatase, at 0.1-10 mM. Other factors affecting the recovery of enzyme activity after butanol solubilization are the state of dilution and pH of the homogenate and individual animal variation. 相似文献