首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dipropynylbenzenes with alkyl groups (CH3C ≡ CRC6H2RC≡CCH3, R=n-C6H13, n-C8H17, n-C10H21, 1ac, respectively) were polymerized with Mo(CO)6 to afford solvent-soluble poly(2,5-dialkyl-p-phenyleneethynylene)s (2ac). The polymers (2ac) had high molecular weight over 3×104, and gave free-standing membranes by solution casting method. According to thermogravimetric analysis (TGA), these poly(p-phenyleneethynylene)s showed high thermal stability (T0 ≥380 °C). The densities of membranes of poly(2,5-dialkyl-p-phenyleneethynylene)s (2ac) were 0.936–0.965, and their fractional free volume (FFV) were relatively large (ca. 0.14–0.15). The oxygen permeability coefficients (PO2) of membranes of 2ac were 4.88, 7.06, and 16.6 barrers, respectively.  相似文献   

2.
Five achiral N-propargylamide monomers with various phenyl-based substitutents, [HC ≡ CCH2NHCOR, R for M1: C6H4CH3; M2: C6H4CH2CH3; M3: C6H4(CH2)2CH3; M4: C6H4(CH2)3CH3; M5: C6H4C(CH3)3], were synthesized and polymerized with a rhodium catalyst, (nbd)Rh+B-(C6H5)4 (nbd = 2,5-norbornadiene). The corresponding five homopolymers were obtained in high yields of 90–95% and with moderate molecular weights (M n ≥ 10 000). All the polymers possessed high cis contents (≥95%). Poly(1)–poly(3) exhibited UV-vis absorption peaks at approx. 350 nm, which indicates that the three polymers formed helical conformations, while no UV-vis absorption peaks could be observed in poly(4) and poly(5) in the wavelength range of 320–500 nm, demonstrating that these two polymers could not adopt helical structures under the examined conditions. To confirm the helical structures formed in poly(1)–poly(3), a chiral monomer, M6, was utilized to copolymerize with M2, which was used as the representative for M1−M3. M6 was utilized since its polymer could form stable helices under suited conditions. The resulting copolymers exhibited remarkable CD effects, however, the maximum wavelength in the copolymers varied remarkably, mainly depending on the composition of the copolymers. It is concluded that in the formation of ordered helical conformations, the substitutents of varied bulk led to different steric repulsion and varied synergic effects among the neighboring pendent groups.  相似文献   

3.
Haichao Zhao  Toshio Masuda 《Polymer》2006,47(5):1584-1589
Pyrene-functionalized chiral N-propargylamide, (R)-HC≡CCH2NHCOCH(CH3)O-1,4-C6H4-OCO(CH2)3-1-pyrenyl (1) was polymerized with (nbd)Rh+[η6-C6H5B(C6H5)3] as a catalyst to obtain the corresponding polymer with a moderate weight in a good yield. Poly(1) was soluble in CHCl3, CH2Cl2, and THF. The polarimetric and CD spectroscopic data indicated that poly(1) existed in a helical structure with predominantly one-handed screw sense in these solvents. The helical structure was stable upon heating and addition of MeOH. Poly(1) showed very large excimer-based fluorescence compared with 1.  相似文献   

4.
4-Trimethylsilyldiphenylacetylenes with methyl group or bromine atom (Me3SiC6H4C≡CC6H4R, R = m-CH3, p-CH3, m-Br, p-Br, 1a–d, respectively) were polymerized with TaCl5/ n-Bu4Sn to afford poly(diphenylacetylene) derivatives (2a–d). The polymers (2a–d) had high molecular weight over 5×105, and gave free-standing membranes by solution casting method. Chlorination of the obtained poly[1-(3-methylphenyl)-2-(4-trimethylsilyl)phenylacetylene] was carried out by using sulfuryl chloride, and then substitution of polyethylene glycol was performed to give poly(diphenylacetylene) possessing polyethylene glycol moieties. Its carbon dioxide permeability (PCO 2) and permselectivity (PCO 2/PN 2) were 2,970 barrers and 9.0, respectively.  相似文献   

5.
The radical polymerizations of 2-, 3-, and 4-(trimethylsilylethynyl)styrenes (1 a – c) and copolymerizations of 1 a – c (M1) with styrene (M2) have been studied. Copolymerization parameters were determined as r1 = 1.22 and r2 = 0.54 for 1 a, 1 = 1.10 and r2 = 0.90 for 1 b, and r1 = 1.42 and r2 = 0.38 for 1 c. The deprotection of the trimethylsilyl groups in poly[(trimethylsilylethynyl)styrene] (2 a – c) and poly[(trimethylsilylethynyl)styrene-co-styrene] (4 a – c) using (C4H9)4NF smoothly proceeded to yield poly(ethynylstyrene) (3 a – c) and poly(ethynylstyrene-co-styrene) (5 a – c), respectively, which underwent curing reactions at elevated temperature to form crosslinking polystyrenes. Received: 31 March 1997/Revised: 2 June 1997/Accepted: 3 June 1997  相似文献   

6.
Jinqing Qu  Toshio Masuda 《Polymer》2006,47(19):6551-6559
Novel acetylene monomers containing N-phenyl-substituted carbazole (Cz) and triphenylamine (TPA) groups, namely, 3-ethynyl-9-phenylcarbazole (1) and p-(N,N-diphenylamino)phenylacetylene (2) were synthesized, and polymerized with several Rh-, W-, and Mo-based catalysts. Poly(1) and poly(2) with high number-average molecular weights (15?500-974?000) were obtained in good yields (77-97%), when [(nbd)RhCl]2-Et3N (nbd = norbornadiene) was used as a catalyst. The polymers exhibited UV-vis absorption peaks derived from the Cz and TPA moieties at 250-350 nm and polyacetylene backbone above 350 nm. The UV-vis absorption band edge wavelengths of the polymers were longer than those of the corresponding monomers. Poly(2) exhibited a UV-vis absorption peak at a longer wavelength than poly(1) did, which indicates that poly(2) has main chain conjugation longer than that of poly(1). The molecular weights and photoluminescence quantum yields of the polymers obtained by the polymerization using [(nbd)RhCl]2-Et3N were larger than those of the Rh+(nbd)[η6-C6H5B(C6H5)3]-based counterparts. The cyclic voltammograms of the polymers indicated that they had clear electrochemical properties; the onset oxidation voltage of poly(1) was higher than those of N-alkyl-substituted Cz derivatives. The polymers showed electrochromism and changed the color from pale yellow to blue by application of voltage, presumably caused by the formation of charged polaron at the Cz and TPA moieties. The temperatures for 5% weight loss of the polymers were around 350-420 °C under air, indicating the high thermal stability.  相似文献   

7.
The ruthenium (II) diene complexes [Ru(X)(Cl)(nbd)(dppb)] (X = Cl, H; nbd = 2,5-norbornadiene; dppb = PPh2(CH2)4PPh2) have been prepared and characterized spectroscopically. The X-ray crystal structure of RuCl2(nbd)(dppb) (crystal data at 22°C: space group P1, a = 10.896 (1) Å, b = 15.168(2) Å, c = 10.829 (1) Å, α = 103.02(1)°, β = 107.08(1)°, γ = 81.65(1)°, Z = 2, R = 0.054 for 6420 reflections) shows an octahedral geometry at Ru, with the chloro ligands slightly distorted from a trans configuration (Cl)(1)-Ru-C1(2) = 168.4°); the unit cell contains two molecules of the complex and one molecule of benzene. Reaction of this complex with H2, in presence of Proton Sponge (PS, 1,8-bis(dimethylamino)naphthalene) as base, is complicated by initial dissociation of nbd, and [Ru2Cl5(dppb)2]-PSH+ is the major product. A minor product, the hydrido(diene) complex trans-RuCl(nbd)(dppb) 5 , characterized spectroscopically, is more effectively synthesized from (a) trans-Ru(H)Cl(nbd)(PPh3)2, 1 , and dppb, or (b) reaction of RuCl2(dppb)-(PPh3) with H2 in presence of nbd and PS. Complex 5 is unreactive toward H2 or CO while 1 has been shown previously to give η2-H2 and norbornenoyl derivatives, respectively; the differences in reactivity are discussed.  相似文献   

8.
6-dimethylamino-6-methylfulvene (7) was converted to the [(C5H4)–CMe2–NMe2] ligand system (8) by treatment with methyllithium. Its reaction with MCl4 (M = Zr, Ti) followed by treatment with CH3Li gave the respective [(C5H4)–CMe2–NMe2]2M(CH3)2 complexes (12). Their reaction with B(C6F5)3 led to reactive metallocene cation complexes that instantaneously underwent CH activation at a N–CH3 group to yield the metallacyclic cation complexes 15. (tert-butylaminomethyl)fluorene was prepared by the addition of tert-butylisocyanate to fluorenyllithium followed by hydride reduction. Deprotonation by a variety of bases gave rise to a series of competing and consecutive reactions to yield several unusually structured products, among them a fluorenyl-anellated η5-1-azapentadienyl anion equivalent (25) and [(flu)-CH2–NCMe3]Li2 (23). An improved way of generating synthetically useful C1-linked [Cp–C1(R) n –NR1]2- dianion equivalents was developed starting from 6-amino-6-methylfulvene (26). N-silylation followed by double deprotonation with, e.g., lithium diisopropylamide cleanly furnished the respective [(C5H4)–C(=CH2)–NSiMe3]2- dianion 33 (isolated as the dilithio derivative). Its reaction with Cl2Zr(NEt2)2 in THF gave [η5:κ-N-(C5H4)–C(=CH2)–NSiMe3]Zr(NEt2)2 36. Activation of 36 with methylalumoxane in toluene led to the formation of a C1-linked “constrained geometry” Ziegler catalyst that polymerized ethylene similarly as the [(C5Me4)SiMe2NCMe3]ZrCl2 derived literature system. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
A series of organotin(IV) carboxylates complexes; namely, [(Me2Sn)4O2(RCOO)4] (R = C12H15 1, C9H11 2, C8H8ClO 3, C7H9 4) and [Me3(RCOO)]n (R = C12H15 5, C9H11 6, C8H8ClO 7, C7H9 8) have been synthesized. All complexes were characterized by elemental analysis, FT-IR, and NMR (1H, 13C and 119Sn) spectroscopy. Among them, the structures of complexes 13 and 58 were also determined by X-ray crystallography. The structural analysis showed that complexes 13 are the same tetranuclear monomer, and complexes 58 are the same 1D zigzag chain coordination polymer. Furthermore, each complex 1, 2 and 3, can form a supramolecular chain through weak intermolecular interactions.  相似文献   

10.
The synthesis of neutral dinuclear iron–nickel unsymmetrical Schiff base complexes 3 and 4 was achieved via a template reaction involving equimolar amounts of alkyl or aryl “half-unit” precursors, respectively, Fc–C(O)CH=C(CH3)N(H)R (1: R = CH2CH2NH2; 2: R = o-C6H4NH2; Fc = CpFe(η5-C5H4); Cp = η5-C5H5), 5-bromosalicylaldehyde and nickel(II) acetate tetrahydrate in a refluxing CH2Cl2/MeOH (1:1) mixture. The ionic trinuclear unsymmetrical complex 5 was prepared by reacting its dinuclear precursor 3 with the arenophile source, [Cp*Ru(NCCH3)3]PF6 (Cp* = η5-C5(CH3)5), in refluxing CH2Cl2 for 2 h, whereas the trinuclear species 6 was formed upon regioselective π-complexation of the 5-bromosalicylidene ring of 4 by [Cp*Ru]+ at room temperature overnight. All the new compounds were adequately characterized by analytical and spectroscopic techniques and, in addition, the crystal and molecular structures of the “half-unit” 1, the binuclear complex 4 and its hemisolvate adduct 4 · 0.5CH3OH, the trinuclear Schiff base compound 5 · 2(CH3)2CO, and the mixed sandwich metalloligand 7 have been determined by X-ray crystallography. Both organometallic–inorganic hybrids 5 and 6 contain the neutral electron-releasing ferrocenyl group, and the cationic electron-withdrawing ruthenium mixed sandwich, linked through the unsymmetrical tetradentate Schiff base complex {Ni(ONNO)}. UV–vis, 1H and 13C NMR as well as electrochemical data clearly indicate a mutual donor–acceptor electronic influence between the organometallic termini. Furthermore, X-ray crystal structure analysis of 5 · 2(CH3)2CO reveals the partial delocalization of bonding electron density throughout the dinucleating nickel Schiff base ligand. Dedicated to Prof. Didier Astruc, a true friend, an outstanding lecturer and scientist, in honor of his pioneering research efforts and accomplishments in the fields of organometallic chemistry, dendrimers and their applications in nanocatalysis.  相似文献   

11.
A kinetic study of the prooxidant effect of α-tocopherol was performed. The rates of allylic hydrogen abstraction from various unsaturated fatty acid esters (ethyl stearate 1, ethyl oleate 2, ethyl linoleate 3, ethyl linolenate 4, and ethyl arachidonate 5) by α-tocopheroxyl radical in toluene were determined, using a double-mixing stopped-flow spectrophotometer. The second-order rate constants (k p) obtained are <1 × 10−2 M−1 s−1 for 1, 1.90 × 10−2 M−1 s−1 for 2, 8.33 × 10−2 M−1 s−1 for 3, 1.92 × 10−1 M−1 s−1 for 4, and 2.43 × 10−1 M−1 s−1 for 5 at 25.0 °C. Fatty acid esters 3, 4, and 5 contain two, four, and six –CH2– hydrogen atoms activated by two π-electron systems (–C=C–CH2–C=C–). On the other hand, fatty acid ester 2 has four –CH2– hydrogen atoms activated by a single π-electron system (–CH2–C=C–CH2–). Thus, the rate constants, k abstr/H, given on an available hydrogen basis are k p/4 = 4.75 × 10−3 M−1 s−1 for 2, k p/2 = 4.16 × 10−2 M−1 s−1 for 3, k p/4 = 4.79 × 10−2 M−1 s−1 for 4, and k p/6 = 4.05 × 10−2 M−1 s−1 for 5. The k abstr/H values obtained for 3, 4, and 5 are similar to each other, and are by about one order of magnitude higher than that for 2. From these results, it is suggested that the prooxidant effect of α-tocopherol in edible oils, fats, and low-density lipoproteins may be induced by the above hydrogen abstraction reaction.  相似文献   

12.
Summary Poly(phenylacetylene)s bearing dialkylamino groups were prepared by the polymerization of p-(N,N-dialkylamino)phenylacetylenes with [Rh(nbd)Cl]2, and their electrochemical behavior was examined. Rh-catalyzed polymerization of p-(N,N-diethylamino)phenylacetylene (DEAPA) and p-(N,N-di-n-butylamino)phenylacetylene (DBAPA) in toluene in the presence of triethylamine gave good yields of the polymers (86 and 90%, respectively). Poly(DEAPA) was soluble in chloroform and dichloromethane, and poly(DBAPA) dissolved in various solvents such as toluene, THF, dichloromethane and chloroform. Poly(DEAPA) and poly(DBAPA) showed onset temperatures at 248 and 190°C, respectively, and absorptions around 300–400 nm. Electrochemical doping of the polymer films resulted in the shift of the absorptions to a region around 680 nm, which accompanied a color change of the polymer films from green ocher to deep blue. Received: 26 October 1998/Revised version: 6 November 1998/Accepted: 12 November 1998  相似文献   

13.
Dipropynylbenzene with branched alkoxy and alkyl groups [CH3C≡CRC6H2RC≡CCH3, R = 2-methylpropoxy (1a), 3-methylbutoxy (1b), 4-methylpentoxy (1c), cyclohexylmethoxy (1d), 2-ethylhexoxy (1e), 2-octoxy (1f), 2-ethylhexyl (1g), and 2-octyl (1h)] were polymerized with Mo(CO)6 in the presence of 4-(trifluoromethyl)phenyl to afford poly(2,5-di(alkoxy or alkyl)-p-phenyleneethynylene)s (2ah). Polymer 2a was insoluble in any solvents, but the other polymers (2bh) were soluble in common organic solvents. The polymers with relatively long side chains (2eh) had high molecular weight over 1.6 × 104 and gave free-standing membranes by solution-casting method. The densities of membranes of 2eh were 0.914–0.998, and their fractional-free volume values were relatively large (0.094–0.158). The oxygen permeability coefficients of membranes of 2eh were 18.4, 12.7, 4.85, and 19.3 barrers, respectively. It was found that poly(p-phenyleneethynylene) with 2-octyl side groups, which have the branch at the nearest position from main chain, exhibited the highest gas permeability.  相似文献   

14.
Jinqing Qu  Toshio Masuda 《Polymer》2007,48(22):6491-6500
Pyrene-functionalized chiral methylpropargyl esters, (R)-3-butyn-2-yl-1-pyrenebutyrate [(R)-1], (S)-3-butyn-2-yl-1-pyrenebutyrate [(S)-1], (R)-3-butyn-2-yl-1-pyrenecarboxylate [(R)-2], and 3-butyn-2-yl-1-pyrenecarboxylate [(R,S)-2] were polymerized with (nbd)Rh+[η6-C6H5B(C6H5)3] to obtain the corresponding polymers with moderate molecular weights (Mn: 10?500-66?500) in good yields (82-97%). All the polymers were soluble in CHCl3, CH2Cl2, and THF. The polarimetric and CD spectroscopic data indicated that poly[(R)-1], poly[(S)-1], and poly[(R)-2] existed in a helical structure with predominantly one-handed screw sense in these solvents. The helical structure of poly[(R)-1] and poly[(S)-1] was stable upon heating and addition of MeOH, while that of poly[(R)-2] changed upon MeOH addition. The copolymerization of (R)-1 with (S)-1 was also conducted to obtain the copolymers satisfactorily. Poly[(R)-1], poly[(S)-1], and poly[(R)-2] emitted fluorescence smaller than the corresponding racemic copolymers. The fluorescence intensity was tuned by the addition of MeOH to THF solutions of the polymers.  相似文献   

15.
Haichao Zhao  Toshio Masuda 《Polymer》2006,47(8):2596-2602
A glutamic acid- and azobenzene-containing novel N-propargylamide, (S)-CHCCH2NHCOCH(CH2CH2CO2CH2C6H5)NHCO2CH2CH2-p-C6H4NNC6H5 (1) was synthesized and polymerized with (nbd)Rh+[η6-C6H5B(C6H5)3] as a catalyst to obtain the corresponding polymer [poly(1)] with the moderate number-average molecular weight of 12,200 in 93% yield. The chiroptical studies revealed that poly(1) took a helical structure in THF, CHCl3, CH2Cl2 and toluene. Poly(1) underwent solvent and heat-driven helix-helix transition. The trans-azobenzene of the side chain isomerized into cis upon UV-irradiation, accompanying decrease in helicity. The cis-azobenzene moiety reisomerized into trans upon visible-light irradiation, while the polymer did not recover the original helicity.  相似文献   

16.
Bifunctional organometallic silicon precursor monomers and substrates FC(SiMe2H)2 (1) [FC = (η5-C5H4)Fe(η5-C5H4)]; FC(SiMe2(CH2)xCH=CH2)2 [x = 0 (2), 1 (3)], [η5-C5H4-SiMe2(CH2)xCH=CH2)]Fe(CO)2SiMe2(CH2)xCH=CH2 x = 0 (4), 1 (5) and (η5-C5H4-SiMe2H)Fe(CO)2SiMe2H (6) have been used to make a series of new iron containing polymers via hydrosilylation reactions. In addition to the vinyl- and allyl-containing substrates 2, 3, 4 and 5 the organosilicon compounds [CH2=CHSiMe2]2O, 1,4-(H2C=CH-SiMe2)2C6H4 and (HC≡CH–SiMe2)2O were also used as substrates for the hydrosilylation reaction. The reactions between the various SiH and CH=CH2 and C≡C functionalities were performed in the presence of Pt(0) catalyst and resulted in regioselective (β-isomer and β-(E) isomer) products as determined by NMR spectroscopy. Molecular weights of all the polymers were determined by Gel Permeation Chromatography, which revealed oligomeric materials with narrow polydispersity. Cyclic voltammetric studies of exhibited single reversible redox processes due to the Fe(II)/Fe(III) couple when present, and irreversible oxidation for the presence of any Fp Fe atom. This article is dedicated to Professor Astruc.  相似文献   

17.
A novel MoV–YbIII bimetallic chain, {[YbIII(bpy)2(DMF)(H2O)][MoV(CN)8]·0.5bpy·4.5H2O}n (1) (DMF = N,N′-dimethylformamide; bpy = 2,2′-bipyridine), has been constructed by the reaction of [Mo(CN)8]3− with Yb3+ and 2,2′-bipyridine. Complex 1 is confirmed as a host–guest supramolecular structure by X-ray structural analysis. The neighboring chains interact with each other with two types of hydrogen bonds and two types of π···π interactions. Thus complex 1 has a unique 3D network. Magnetic analysis of 1 indicates the presence of a strong YbIII single-ion effect owing to spin–orbital coupling within this system.  相似文献   

18.
Reaction of Cu(BF4)2 salt with the polymer [NP(OC6H4C(O)C–OC6H5)2] n (1) in THF affords three new polymers gels containing varied copper (II) ions contents, (2), (3), and (4). The nature of the copper (II) ions in the gel (2)(4) was examined by IR spectroscopy, solid state 31P, 13C and 63Cu NMR spectroscopy and EPR spectroscopy. Despite the copper content, the gels were insulators as measured by complex impedance spectroscopy. SEM images show a uniform distribution of the Cu (II) ions and a most porous morphology than those without copper polymer. TEM images show the formation of small aggregates being smallest for, gel (2) of about 200 nm. All the data suggest the Cu2+ centers behave as a solid dilute into the polyphosphazenes.  相似文献   

19.
Summary Palladium-catalyzed polymerization of η 6-(1,4-diethynylbenzene)tricarbonyl chromium (1) with 3-alkyl-2,5-dibromothiophene (2a-c) was carried out to give the corresponding alternating conjugated copolymers (5a-c) in good yields. The structures of the polymers were supported by 1H NMR and IR spectra. The polymers obtained were soluble in common solvents such as THF, CH2Cl2, CHCl3 and toluene. The molecular weights of the polymers were determined by GPC. Their thermal, optical and electrical properties were investigated in detail. Received: 18 March 2002 /Accepted: 1 April 2002  相似文献   

20.
New photocatalytically active isostructural two-dimensional mixed metal-pyridine dicarboxylates, [M(H2O)3Co{C5N1H3(COO)2}3])], M = Gd (1), Dy (2) and Y (3) have been prepared under hydrothermal conditions. The structure consists of a network of MO6(H2O)3, CoO3N3 polyhedral units connected by the pyridine dicarboxylates forming two-dimensional layers, which are arranged in an AAAA... fashion. The photocatalytic studies on 13 indicate that they are active catalysts for the degradation of simple organic dyes, such as Remazol brilliant blue R (RBBR) and Orange G (OG) in the presence of UV light. The compounds have also been characterized by powder XRD, IR, TGA, UV-Vis and magnetic studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号