首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evidence in vivo has suggested the existence of subtypes of the delta opioid receptor (DOR), which have been termed delta 1 and delta 2. These proposed DOR subtypes are thought to be activated by [D-Pen2, D-Pen5]enkephalin (DPDPE, delta 1) and [D-Ala2, Glu4]deltorphin (delta 2). Recent work in which an antisense oligodeoxynucleotide (oligo) to a cloned DOR was administered by the intrathecal (i.th.) route has demonstrated a reduction in the antinociceptive actions of both i.th. DPDPE and [D-Ala2, Glu4]deltorphin, but not of [D-Ala2, NMPhe4, Gly-ol]enkephalin (DAMGO, mu agonist) in mice. The present investigation has extended these observations by administering the same DOR antisense oligo sequence by the intracerebroventricular (i.c.v.) route and evaluating the antinociceptive actions of i.c.v. agonists selective for delta, mu and kappa receptors. I.th. treatment with DOR antisense oligo, but not mismatch oligo, significantly inhibited the antinociceptive actions of both i.th. DPDPE and [D-Ala2, Glu4]deltorphin but not of i.th. DAMGO or U69,593 (kappa agonist), confirming previous data. In contrast, i.c.v. DOR antisense oligo, but not mismatch oligo, selectively inhibited the antinociceptive response to i.c.v. [D-Ala2, Glu4]deltorphin without altering the antinociceptive actions of i.c.v. DPDPE, DAMGO or U69,593. The data suggest that the cloned DOR corresponds to that pharmacologically classified as delta 2 and further, suggest that this delta receptor subtype may play a major role in eliciting spinal delta-mediated antinociception.  相似文献   

2.
The present experiments evaluated the influence of intraventricular mu and delta opioid receptors on affective vocal and reflexive responses to aversive stimuli in socially inexperienced, as well as defensive and submissive responses in defeated, adult male Long-Evans rats. Defeat stress consisted of: (1) an aggressive confrontation in which the experimental intruder rat exhibited escape, defensive and submissive behaviors [i.e., upright, supine postures and ultrasonic vocalizations (USV)], and subsequently, (2) protection from the resident stimulus rat with a wire mesh screen for 10-20 min. Defeat stress was immediately followed by an experimental session with tactile startle (20 psi). The mu opioid receptor agonists morphine (0.1-0.6 microg i.c.v.) and [D-Ala2-N-Me-Phe4-Gly5-ol]-enkephalin (DAMGO; 0.01-0.3 microg i.c.v.), and the delta opioid receptor agonist [D-Pen2,5]-enkephalin (DPDPE; 10-100 microg i.c.v.) dose-dependently decreased startle-induced USV and increased tail-flick latencies in socially inexperienced and defeated rats. Of greater interest, morphine, DAMGO and DPDPE increased the occurrence of the submissive crouch posture, and defeated rats were more sensitive than socially inexperienced rats to the startle-induced USV-suppressive and antinociceptive effects of morphine and DPDPE. The antinociceptive effects of DAMGO were likewise obtained at lower doses in defeated rats. Finally, the USV-suppressive effects of morphine and DAMGO were reversed with the mu receptor antagonist naltrexone (0.1 mg/kg i.p.), but the USV-suppressive effects produced by DPDPE were not reversed with the delta receptor antagonist naltrindole (1 mg/kg i.p.). These results confirm mu, but not delta opioid receptor activation as significant in affective vocal, passive-submissive behavior, as well as reflexive antinociception. Furthermore, similar to previous studies with restraint and electric shock stress, the facilitation of mu opioid effects on vocal responses and antinociception is consistent with the proposal that defeat stress activated endogenous opioid mechanisms.  相似文献   

3.
Heroin administered i.c.v. acts on supraspinal mu opioid receptors in ICR mice but on delta receptors in Swiss Webster mice. The purpose of this study was to determine the degree to which genotype plays a role in the opioid receptor selectivity of heroin across a range of fully inbred strains of mice. Six inbred strains were given heroin i.c.v. 10 min before the tail-flick test. Differences in the descending neurotransmitter systems involved in supraspinal opioid-induced analgesia were evaluated as the first step. Antagonism by bicuculline given intrathecally indicated the involvement of supraspinal delta receptors in activating spinal gamma-aminobutyric acid (GABA) receptors; antagonism by intrathecal methysergide indicated either mu or kappa receptor involvement. Antagonism by intrathecal yohimbine implicated mu and eliminated kappa receptor involvement. Intracerbroventricular opioid antagonists (beta-funaltrexamine, 7-benzylidenenaltrexone, naltriben, or nor-binaltorphimine) provided further differentiation. Based on these initial results, receptor selectivity was determined by more extensive ED50 experiments with i.c.v. administration of heroin with opioid antagonists, beta-funaltrexamine (for mu), naltrindole (for delta), and nor-binaltorphimine (for kappa). The combined results indicated that heroin analgesia was predominantly mediated in C57BL/6J by delta, in DBA/2J and CBA/J by mu, and in BALB/cByJ and AKR/J by kappa receptors. The response in C3H/HeJ appeared to involve mu receptors. The results indicate that the opioid receptor selectivity of heroin is genotype-dependent. Because these genotypes are fully inbred, the genetically determined molecular and neurochemical substrate mediating the different opioid receptor selectivities of heroin can be studied further.  相似文献   

4.
The effects of acute and chronic administration of cocaine on the antinociception and tolerance to the antinociceptive actions of mu-(morphine), kappa-(U-50,488H), and delta-([D-Pen2,D-Pen5]enkephalin; DPDPE), opioid receptor agonists were determined in male Swiss-Webster mice. Intraperitoneal injection of 40 mg/kg of cocaine by itself produced weak antinociceptive response as measured by the tail-fick test but the lower doses were ineffective. Administration of morphine (10 mg/kg, SC), U-50,488H (25 mg/kg, IP) or DPDPE (10 microg/mouse, ICV) produced antinociception in mice. Cocaine (20 mg/kg) potentiated the antinociceptive action of morphine and DPDPE but had no effect on U-50,488H-induced antinociception. Administration of morphine (20 mg/kg, SC), U-50,488H (25 mg/kg, IP) or DPDPE (20 microg/mouse, ICV) twice a day for 4 days resulted in the development of tolerance to their antinociceptive actions. Tolerance to the antinociceptive actions of morphine and U-50,488H was inhibited by concurrent treatment with 20 or 40 mg/kg doses of cocaine; however, tolerance to the antinociceptive action of DPDPE was not modified by cocaine. It is concluded that cocaine selectively potentiates the antinociceptive action of mu- and delta- but not of the kappa-opioid receptor agonist. On the other hand, cocaine inhibits the development of tolerance to the antinociceptive actions of mu- and kappa- but not of delta-opioid receptor agonists in mice.  相似文献   

5.
The effects of diabetes on morphine-induced place preference in mice were examined. Morphine caused dose-related place preference in both diabetic and non-diabetic mice. This morphine-induced place preference in diabetic mice was greater than that in non-diabetic mice. The morphine (5 mg/kg)-induced place preference in both diabetic and non-diabetic mice was significantly antagonized by pretreatment with beta-funaltrexamine, a selective mu-opioid receptor antagonist, but not with naloxonazine, a selective mu1-opioid receptor antagonist. The morphine (5 mg/kg)-induced place preference in non-diabetic mice was attenuated by pretreatment with either naltriben, a selective delta2-opioid receptor antagonist, or 7-benzylidenenaltrexone. a selective delta1-opioid receptor antagonist. Moreover, the morphine (10 mg/kg)-induced place preference in non-diabetic mice was antagonized by pretreatment with 7-benzylidenenaltrexone (0.7 mg/kg). Although 7-benzylidenenaltrexone had no effect on the place preference induced by 5 mg/kg morphine in diabetic mice, it reduced the place preference induced by 3 mg/kg morphine. Furthermore, the morphine (5 mg/kg)-induced place preference in diabetic mice was significantly antagonized by co-pretreatment with beta-funaltrexamine (10 mg/kg) and 7-benzylidenenaltrexone (0.7 mg/kg). 2-Methyl-4a alpha-(3-hydroxyphenyl)- 1,2,3,4,4a,5,12,12a alpha-octahydroquinolino[2,3,3-g]isoquinoline (TAN-67), a non-peptide delta-opioid receptor agonist, produced place preference in diabetic, but not in non-diabetic mice. These results support the hypothesis that the morphine-induced place preference is mainly mediated through the activation of the mu2-opioid receptor. Furthermore, the enhancement of the morphine-induced place preference in diabetic mice may be due to the up-regulation of delta-opioid receptor-mediated functions.  相似文献   

6.
Using approaches emphasizing differential antagonism of receptor selective agonists and cross-tolerance paradigms, evidence in vivo has suggested the existence of subtypes of opioid delta receptors, which have been termed delta 1 and delta 2. Recent work has elucidated the structure of an opioid delta receptor. The present investigation attempted to continue to test the hypothesis of subtypes of delta receptors and to correlate the cloned delta receptor with the existing pharmacological classification. Synthetic oligodeoxynucleotides (oligos) complementary to the 5' end of the cloned delta receptor coding region (antisense) or its corresponding sequence (sense) were given by intracerebroventricular (i.c.v.) administration to mice, twice-daily for 3 days and antinociceptive responses to selective agonists at putative delta 1 and delta 2 receptors were subsequently determined. Treatment with antisense, but not sense, oligo significantly inhibited the response to [D-Ala2,Glu4]deltorphin (delta 2 agonist), but not to [D-Pen2,D-Pen5]enkephalin (DPDPE, delta 1 agonist). Further, subsequent administration of DPDPE elicited a full antinociceptive response in the same antisense oligo treated mice which did not show a significant response to [D-Ala2,Glu4]deltorphin while antisense oligo treated mice which responded to DPDPE did not show antinociception when tested subsequently with [D-Ala2,Glu4]deltorphin. The data suggest that the cloned delta receptor corresponds to that pharmacologically classified as delta 2 and continue to support the concept of subtypes of opioid delta receptors.  相似文献   

7.
The effect of delta opioid agonists - [D-Ala2, D-Leu5]-enkephalin (DADLE), [D-Pen2, D-Pen5]-enkephalin (DPDPE) and deltorphin II - on acidified ethanol induced gastric mucosal lesions was studied in the rat compared with that of morphine. It was found that DADLE, DPDPE, deltorphin II and morphine exerted a dose-dependent inhibition on the mucosal lesions injected subcutaneously, their ID50 values were 0.037, 1.8, 3.5 and 0.35 micromoles/kg, respectively. Naltrindole (10 mg/kg sc.), the selective delta opioid receptor antagonist, inhibited the gastroprotective effect of DADLE, DPDPE and deltorphin II, but it failed to antagonise the effect of morphine. Our results suggest that 1. delta receptors are involved in opioid-mediated gastroprotection, 2. ethanol-induced gastric mucosal damage in the rat may be a quick, simple in vivo model for screening opioid delta receptor agonists and antagonists in the periphery.  相似文献   

8.
The effects of 7-nitroindazole (7-NI), an inhibitor of the neuronal nitric oxide synthase (nNOS) which does not increase blood pressure, on tolerance to the antinociceptive activity of mu-(morphine), kappa-(U-50,488H) and delta-([D-Pen2, D-Pen5]enkephalin, DPDPE) opioid receptor agonists were determined in mice. Male Swiss-Webster mice were made tolerant by twice daily injections of morphine (20 mg/kg, s.c.), U-50,488H (25 mg/kg, i.p.) or DPDPE (20 micrograms/mouse, i.c.v.) for 4 days. When tested on day 5, tolerance to their antinociceptive activity was evidenced by decreased response in chronic drug treated mice in comparison to vehicle-injected mice. Concurrent administration of 7-NI (20, 40 or 80 mg/kg, i.p.) with DPDPE did not modify the development of tolerance to the antinociceptive action of DPDPE. However, 7-NI (40 or 80 mg/kg, i.p.) inhibited the development of tolerance to the antinociceptive activity of morphine and U-50,488H but the lower dose of 7-NI (20 mg/kg, i.p.) was not effective. Chronic administration of 7-NI by itself did not modify the acute response to morphine, U-50,488H or DPDPE. It is concluded that a specific inhibitor of nNOS can inhibit tolerance to the antinociceptive activity of mu- and kappa- but not of delta-opioid receptor agonists in mice.  相似文献   

9.
Antagonists of the NMDA type of excitatory amino acid (EAA) receptor attenuate or reverse the development of tolerance to the analgesic effects of the mu opioid agonist morphine, the delta-1 opioid agonist DPDPE but not the kappa-1 agonist U50,488H or the kappa-3 agonist naloxone benzoylhydrazone. The role of the AMPA subtype of EAA receptor in analgesic tolerance was examined using LY293558, a selective competitive antagonist that is active after systemic administration. Administration of morphine, DPDPE, or U50,488H three times daily for 3 days according to an escalating dosing schedule resulted in analgesic tolerance as indicated by an increase in analgesic ED50 values using the tail-flick test in mice. Analgesic tolerance was attenuated when mice received a continuous subcutaneous infusion of LY293558 at doses of 30, 45 or 60 mg/kg/24 hr via an osmotic pump concurrent with the morphine treatment. Continuous subcutaneous infusion of LY293558 (45 mg/kg/24 hr) also reversed established morphine tolerance. In contrast, continuous subcutaneous infusion of the highest dose of LY293558 (60 mg/kg/24 hr) was ineffective in preventing the development of analgesic tolerance to DPDPE or U50,488H. Continuous subcutaneous infusion of LY293558 (60 mg/kg/24 hr) for 3 days protected mice from generalized convulsions produced by the selective AMPA agonist ATPA, indicating that the dosage of LY293558 that attenuated morphine tolerance was effective as an antagonist at AMPA receptors. These results demonstrate that AMPA receptors may play a role in the development and maintenance of morphine, but not DPDPE or U50,488H, analgesic tolerance.  相似文献   

10.
Intrathecal pretreatment of mice with an antisense oligodeoxynucleotide directed against the kappa-1 receptor significantly reduced the antinociceptive effects of the kappa receptor agonist U50,488 as well as delta 9-THC, the major psychoactive ingredient found in cannabis. A mismatched oligodeoxynucleotide which contained four switched bases did not block the antinociception produced by U50,488 or delta 9-THC. Furthermore, kappa-1 antisense did not alter the antinociceptive effects of either the mu receptor-selective opioid DAMGO, or the delta receptor-selective opioid DPDPE. By using kappa-1 antisense, we were able to demonstrate that an interaction occurs between the cannabinoids and opioids in the spinal cord.  相似文献   

11.
Because the role of mu and delta opioid receptors in modulating gastric functions remains uncertain, we studied whether intracerebroventricular (i.c.v.) and subcutaneous (s.c.) injections of new opioid peptides with high selectivity for mu 1 (Lys7-dermorphin), mu 2 (Trp4-Asn7-dermorphin) and delta 2 (D-Ala2-deltorphin II) opioid receptors would modify gastric secretion (after 2 hr pylorus ligature) and transit (after a phenol red meal) in the rat. Neither i.c.v. nor s.c. injections of the delta 2 opioid agonist affected the gastric functions. In contrast, the mu opioid agonists decreased gastric acid secretion and emptying, i.c.v. injections inducing more potent inhibition than s.c. administration. The mu 1 selective opioid antagonist naloxonazine had no effect on the inhibition of the gastric secretory and motor response to these peptides but naloxone completely blocked their effects. Our findings suggest (1) that in rats, stimulation of central naloxonazine insensitive opioid receptors (mu 2 sites) inhibits gastric acid secretion and emptying; and (2) that delta opioid receptors take no part in mediating these functions.  相似文献   

12.
Neuropathic pains have often been classified as opioid-resistant. Here, spinal (intrathecal) actions of morphine and nonmorphine opioids have been studied in a nerve ligation model of neuropathic pain in rats. Mechanical allodynia was evaluated using von Frey filaments. Nerve-injured animals exhibited allodynia that was stable for up to 6 weeks after the surgery. Morphine did not alter allodynia at doses up to 300 nmol (100 micrograms). In contrast, [D-Ala2, NMPhe4, Gly-ol]enkephalin (DAMGO), a high-efficacy mu opioid agonist, produced a significant, dose-related antiallodynic action. [D-Ala2, Glu4]deltorphin (delta agonist) produced a significant antiallodynic effect only at 300 nmol, reaching approximately 70% of the maximum. Coadministration of morphine with a dose of [D-Ala2, Glu4]deltorphin, which was inactive alone, produced a significant and long-lasting antiallodynic action that was antagonized by NTI (delta receptor antagonist); NTI alone had no effect. Although blockade of cholecystokinin-B (CCKB) receptors with L365,260 did not produce effects alone, a significant antiallodynic action was observed when coadministered with morphine; this elevation of nociceptive threshold was abolished by NTI. The finding that DAMGO, but not very large doses of morphine, produced antiallodynic actions suggests that the ability of mu opioids to alleviate the allodynia is related, in part, to efficacy at postsynaptic mu receptors. At an inactive dose, a delta agonist or a CCKB antagonist enhanced morphine antiallodynic efficacy in an NTI-sensitive fashion. CCKB receptor blockade may enhance endogenous enkephalin actions, resulting in enhancement of morphine efficacy through a mu-delta receptor interaction.  相似文献   

13.
We examined the effects of calcium modulators on mu and delta opioid receptor agonist-induced antinociception in both diabetic and nondiabetic mice. In nondiabetic mice, intracerebroventricular (i.c. v.) pretreatment with calcium and thapsigargin, which increase intracellular calcium, reduced [D-Ala2,N-MePhe4,Gly-ol5]-enkephalin (DAMGO)-induced antinociception by shifting its dose-response curve to the right. However, in diabetic mice i.c.v. pretreatment with calcium and thapsigargin did not affect DAMGO-induced antinociception. In contrast i.c.v. administration of agents that decrease intracellular calcium, such as EGTA and ryanodine, enhanced DAMGO-induced antinociception in both diabetic and nondiabetic mice. In contrast with DAMGO i.c.v. pretreatment with calcium and thapsigargin enhanced (-)-TAN67-induced antinociception in nondiabetic mice by shifting its dose-response curve to the left. However, (-)-TAN67-induced antinociception in diabetic mice was not affected by pretreatment with calcium or thapsigargin. Moreover i.c. v. pretreatment with EGTA, but not with ryanodine, reduced (-)-TAN67-induced antinociception in nondiabetic mice. In diabetic mice i.c.v. pretreatment with both EGTA and ryanodine reduced (-)-TAN67-induced antinociception. These results suggest that cytosolic calcium has different effects on mu and delta opioid receptor agonist-induced antinociception. Further, these results suggest that the modification of mu and delta opioid receptor agonist-induced antinociception by diabetes in mice may be due to increased levels of intracellular calcium.  相似文献   

14.
Analogs of Met-enkephalin and [D-Pen2, D-Pen5]enkephalin (DPDPE) containing the partially fluorinated amino acid 4,4-difluoro-2-aminobutyric acid (DFAB) in the 2- or 3-position of the peptide sequence were synthesized and their opioid activities and receptor selectivities were determined in vitro. The linear fluorinated [D-DFAB2, Met5-NH2]enkephalin showed mu and delta agonist potencies comparable to those of natural [Leu5]enkephalin. The partially fluorinated DPDPE analogs behaved differently as compared with their non-fluorinated correlates. While L-amino acid substitution in position 3 of DPDPE usually resulted in higher delta agonist potency than D-amino acid substitution. [D-DFAB3]DPDPE turned out to be a more potent delta agonist than [L-DFAB3]DPDPE. Furthermore, [D-DFAB3]DPDPE showed over 100-fold higher delta agonist potency than [D-Abu3]DPDPE (Abu = 2-aminobutyric acid), indicating that the fluorine substituents interact favorably with a delta opioid receptor subsite.  相似文献   

15.
Previous results using an amphibian model showed that systemic and spinal administration of opioids selective for mu, delta and kappa-opioid receptors produce analgesia. It is not known whether non-mammalian vertebrates also contain supraspinal sites mediating opioid analgesia. Thus, opioid agonists selective for mu (morphine; fentanyl), delta (DADLE, [D-Ala2, D-Leu5]-enkephalin; DPDPE, [D-Pen2, D-Pen5]-enkephalin) and kappa (U50488, trans-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)-cyclohexyl] benzeneacetamide methanesulfonate; CI977, (5R)-(544alpha,744alpha,845beta)-N-methyl-N-[7-(1-p yrr olidinyl)-1-oxaspiro[4,5]dec-8yl]-4-benzofuranaceta mide++ + monohydrochloride) opioid receptors were tested for analgesia following i.c.v. administration in the Northern grass frog, Rana pipiens. Morphine, administered at 0.3, 1, 3 and 10 nmol/frog, produced a dose-dependent and long-lasting analgesic effect. Concurrent naltrexone (10 nmol) significantly blocked analgesia produced by i.c.v. morphine (10 nmol). ED50 values for the six opioids ranged from 2.0 for morphine to 63.9 nmol for U50488. The rank order of analgesic potency was morphine > DADLE > DPDPE > CI977 > fentanyl > U50488. These results show that supraspinal sites mediate opioid analgesia in amphibians and suggest that mechanisms of supraspinal opioid analgesia may be common to all vertebrates.  相似文献   

16.
The recently isolated peptides endomorphin-1 and endomorphin-2 have been suggested to be the endogenous ligands for the mu receptor. In traditional opioid receptor binding assays in mouse brain homogenates, both endomorphin-1 and endomorphin-2 competed both mu1 and mu2 receptor sites quite potently. Neither compound had appreciable affinity for either delta or kappa1 receptors, confirming an earlier report. However, the two endomorphins displayed reasonable affinities for kappa3 binding sites, with Ki values between 20 and 30 nM. Both endomorphins competed 3H-[D-Ala2, MePhe4,Gly(ol)5] enkephalin binding to MOR-1 receptors expressed in CHO cells with high affinity. In mouse brain homogenates 125I-endomorphin-1 and 125I-endomorphin-2 binding was selectively competed by mu ligands. 125I-Endomorphin-1 and 125I-endomorphin-2 also labeled MOR-1 receptors expressed in CHO cells with high affinity. Autoradiography of the two 125I-labeled endomorphins demonstrated regional patterns in the brain similar to those previously observed for mu drugs. Pharmacologically, the endomorphins were potent analgesics. Although they were equipotent supraspinally, endomorphin-1 was more potent spinally. Endomorphin analgesia was effectively blocked by naloxone, as well as the mu-selective antagonists beta-funaltrexamine and naloxonazine. In CXBK mice, which are insensitive to supraspinal morphine, neither endomorphin was active, consistent with a mu mechanism of action. Finally, the endomorphins inhibited gastrointestinal transit. In conclusion, these results support the mu selectivity of these agents.  相似文献   

17.
We assessed the effect of diabetes on antinociception produced by intracerebroventricular injection of delta-opioid receptor agonists [D-Pen2,5]enkephalin (DPDPE) and [D-Ala2]deltorphin II. The antinociceptive effect of DPDPE (10 nmol), administered i.c.v., was significantly greater in diabetic mice than in non-diabetic mice. The antinociceptive effect of i.c.v. DPDPE was significantly reduced in both diabetic and non-diabetic mice following pretreatment with 7-benzylidenenaltrexone (BNTX), a selective delta 1-opioid receptor antagonist, but not with naltriben (NTB), a selective delta 2-opioid receptor antagonist. There were no significant differences in the antinociceptive effect of [D-Ala2]deltorphin II (3 nmol, i.c.v.) in diabetic and non-diabetic mice. Furthermore, the antinociceptive effect of i.c.v. [D-Ala2]deltorphin II was significantly reduced in both diabetic and non-diabetic mice following pretreatment with NTB, but not with BNTX. In conclusion, mice with diabetes are selectively hyper-responsive to supraspinal delta 1-opioid receptor-mediated antinociception, but are normally responsive to activation of delta 2-opioid receptors.  相似文献   

18.
Opioids modulate brain dopaminergic function in various experimental paradigms. This study used the rotational model of behavior in rats with unilateral 6-hydroxydopamine-induced lesions of the nigrostriatal pathway to investigate this interaction. Doses of two presynaptically acting dopaminergic drugs, amphetamine and cocaine, were coadministered with several doses of the mu opioid agonist, morphine. Morphine, at 3.0 mg/kg, potentiated rotational behavior induced by each dose of the stimulants. To determine the receptor specificity of the actions of morphine, the mu opioid agonists buprenorphine, fentanyl, levorphanol, meperidine, and methadone, and dextrorphan, the non-opioid isomer of levorphanol, were administered alone and with 1.0 mg/kg amphetamine. Each of these drugs, as well as morphine, produced circling behavior on its own. All of the mu opioid agonists and dextrorphan increased amphetamine-induced turning; the coadministration of dextrorphan, levorphanol, meperidine, methadone and morphine with amphetamine produced turning greater than predicted by simple additivity. To determine whether an opioid receptor was involved in these interactions, the opioid antagonist, naltrexone, was administered before the amphetamine/mu opioid receptor agonist combination. Naltrexone blocked the potentiating effects of morphine, but not those of the other drugs. Moreover, naltrexone alone dose-dependently increased amphetamine-induced rotational behavior. These studies show that some mu opioid receptor agonists can potentiate stimulant-induced rotational behavior and that blockade of opioid receptors can also produce a potentiation. The role of mu opioid receptors in these effects remains unclear.  相似文献   

19.
The present study examined interactions between mu and delta opiate subtypes and serotonin. Noxious activity evoked by radiant heat (51 degrees C, 8 sec) was extracellularly recorded from single discriminated wide dynamic range (WDR) neurons in decerebrate spinally transected cats. DAGO (mu selective opioid agonist) 1 microgram or DPDPE (delta selective opioid agonist) 30 micrograms was combined with serotonin (n = 6 each) 250 micrograms. The dose of each drug by itself when administered intrathecally produced no suppression of noxiously evoked activity. Although the combination of DAGO and serotonin produced no significant suppression of noxiously evoked activity, DPDPE and serotonin produced significant suppression to 72.8 +/- 8.0 % (mean +/- SEM) of control values (P < 0.01). Intravenously administered naloxone 0.1 mg reversed the suppression produced by the DPDPE-serotonin combination. Our results suggest that combinations of serotonin and delta selective opiates may be more effective in suppressing noxiously evoked activity than combinations with mu selective opiates.  相似文献   

20.
Human peripheral blood granulocytes previously were found to contain opioid delta 2-receptors mediating stimulation by opioid peptides of chemotaxis. Studies presented in this work indicate that granulocytes also contain opiate alkaloid-selective, opioid peptide-insensitive receptors mediating inhibition by morphine and other opiates of cytokine-induced activation and chemotaxis. Binding studies with [3H]morphine and [3H]diprenorphine ([3H]DPN) indicated the presence of receptor sites, at considerable density with affinities and selectivity for opiates comparable with those of the mu 3-receptor of human peripheral blood monocytes (macrophages). The influence of the guanosine 5'-triphosphate (GTP) analogue GppNHp on binding indicated that the granulocyte receptor was linked to a G protein. Morphine but not opioid peptides interfered with activation and/or chemotaxis of the granulocytes induced by TNF-alpha, IL-1 alpha, IL-8, and FMLP (chemotactic peptide). These effects of morphine were blocked by the antagonist naloxone. Levorphanol inhibited TNF-alpha-induced activation, and also potentiated the inhibition by morphine. Furthermore, in binding assays, levorphanol enhanced the affinity of the receptor for morphine. Dextrorphan had no effect on activation or chemotaxis, and it also had no effect on binding, indicative of stereoselectivity for the effect of levorphanol. It is concluded that human granulocytes contain opiate alkaloid-selective mu 3-receptors that mediate inhibitory effects of morphine on cellular activation by cytokines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号