首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
具有补偿埋层的槽型埋氧层SOI高压器件新结构   总被引:3,自引:3,他引:0  
赵秋明  李琦  唐宁  李勇昌 《半导体学报》2013,34(3):034003-4
A new silicon-on-insulator(SOI) high-voltage MOSFET structure with a compensation layer on the trenched buried oxide layer(CL T-LDMOS) is proposed.The high density inverse interface charges at the top surface of the buried oxide layer(BOX) enhance the electric field in the BOX and a uniform surface electric field profile is obtained,which results in the enhancement of the breakdown voltage(BV).The compensation layer can provide additional P-type charges,and the optimal drift region concentration is increased in order to satisfy the reduced surface electric field(RESURF) condition.The numerical simulation results indicate that the vertical electric field in the BOX increases to 6 MV/cm and the B V of the proposed device increases by 300%in comparison to a conventional SOI LDMOS,while maintaining low on-resistance.  相似文献   

2.
漂移区阶梯掺杂的双栅SOI LDMOS研究   总被引:1,自引:0,他引:1  
A new double gate SOI LDMOS with a step doping profile in the drift region is proposed. The structure is characterized by one surface gate and another embedded gate under the P-body region. The broadened current flow path and the majority carrier accumulation layer on the side wall of the embedded gate reduce the specific on-resistance (Ron, sp). The electric field distribution is improved due to the embedded gate and step doping profile, resulting in a high breakdown voltage (BV) and low Ron, sp. The influences of device parameters on BV and Ron, sp are investigated by simulation. The results indicate that BV is increased by 35.2% and Ron, sp is decreased by 35.1% compared to a conventional SOI LDMOS.  相似文献   

3.
A novel triple RESURF(T-resurf) SOI LDMOS structure is proposed.This structure has a P-type buried layer.Firstly,the depletion layer can extend on both sides of the P-buried layer,serving as a triple RESURF and leading to a high drift doping and a low on-resistance.Secondly,at a high doping concentration of the drift region, the P-layer can reduce high bulk electric field in the drift region and enhance the vertical electric field at the drain side,which results in uniform bulk electric field distributions and an enhanced BV.The proposed structure is used in SOI devices for the first time.The T-resurf SOI LDMOS with BV = 315 V is obtained by simulation on a 6μm-thick SOI layer over a 2μm-thick buried oxide layer,and its Rsp is reduced from 16.5 to 13.8 mΩ·cm2 in comparison with the double RESURF(D-resurf) SOI LDMOS.When the thickness of the SOI layer increases, T-resurf SOI LDMOS displays a more obvious effect on the enhancement of BV2/Ron.It reduces Rsp by 25%in 400 V SOI LDMOS and by 38%in 550 V SOI LDMOS compared with the D-resurf structure.  相似文献   

4.
A new SOI (Silicon On Insulator) high voltage device with Step Unmovable Surface Charges (SUSC) of buried oxide layer and its analytical breakdown model are proposed in the paper. The unmovable charges are implemented into the upper surface of buried oxide layer to increase the vertical electric field and uniform the lateral one. The 2-D Poisson's equation is solved to demonstrate the modulation effect of the immobile interface charges and analyze the electric field and breakdown voltage with the various geometric parameters and step numbers. A new RESURF (REduce SURface Field) condition of the SOl device considering the interface charges and buried oxide is derived to maximize breakdown voltage. The analytical results are in good agreement with the numerical analysis obtained by the 2-D semiconductor devices simulator MEDICI. As a result, an 1200V breakdown voltage is firstly obtained in 3pro-thick top Si layer, 2pro-thick buried oxide layer and 70pro-length drift region using a linear doping profile of unmovable buried oxide charges.  相似文献   

5.
A low specific on-resistance(R on;sp/ SOI NBL TLDMOS(silicon-on-insulator trench LDMOS with an N buried layer) is proposed. It has three features: a thin N buried layer(NBL) on the interface of the SOI layer/buried oxide(BOX) layer, an oxide trench in the drift region, and a trench gate extended to the BOX layer.First, on the on-state, the electron accumulation layer forms beside the extended trench gate; the accumulation layer and the highly doping NBL constitute an L-shaped low-resistance conduction path, which sharply decreases the R on;sp. Second, in the y-direction, the BOX's electric field(E-field) strength is increased to 154 V/ m from48 V/ m of the SOI Trench Gate LDMOS(SOI TG LDMOS) owing to the high doping NBL. Third, the oxide trench increases the lateral E-field strength due to the lower permittivity of oxide than that of Si and strengthens the multiple-directional depletion effect. Fourth, the oxide trench folds the drift region along the y-direction and thus reduces the cell pitch. Therefore, the SOI NBL TLDMOS structure not only increases the breakdown voltage(BV), but also reduces the cell pitch and R on;sp. Compared with the TG LDMOS, the NBL TLDMOS improves the BV by 105% at the same cell pitch of 6 m, and decreases the R on;sp by 80% at the same BV.  相似文献   

6.
A unified breakdown model of SOI RESURF device with uniform,step,or linear drift region doping profile is firstly proposed.By the model,the electric field distribution and breakdown voltage are researched in detail for the step numbers from 0 to infinity.The critic electric field as the function of the geometry parameters and doping profile is derived.For the thick film device,linear doping profile can be replaced by a single or two steps doping profile in the drift region due to a considerable uniformly lateral electric field,almost ideal breakdown voltage,and simplified design and fabrication.The availability of the proposed model is verified by the good accordance among the analytical results,numerical simulations,and reported experiments.  相似文献   

7.
伍伟  张波  方健  罗小蓉  李肇基 《半导体学报》2014,35(1):014009-5
A novel buffer super-junction (S J) lateral double-diffused MOSFET (LDMOS) with an N-type buried layer (NB) is proposed. An N- buffer layer is implemented under the SJ region and an N-type layer is buried in the P substrate. Firstly, the new electric field peak introduced by the p-n junction of the P substrate and the N-type buried layer modulates the surface electric field distribution. Secondly, the N-buffer layer suppresses the substrate assisted depletion effect. Both of them improve the breakdown voltage (BV). Finally, because of the shallow depth of the SJ region, the NB buffer SJ-LDMOS is compatible with Bi-CMOS technology. Simulation results indicate that the average value of the surface lateral electric field strength of the NB buffer SJ-LDMOS reaches 23 V/μm at 15/μm drift length which results in a BV of 350 V and a specific on-resistance of 21 mΩ·cm2.  相似文献   

8.
A novel high-voltage device structure with a floating heavily doped N~+ ring embedded in the substrate is reported,which is called FR LDMOS.When the N~+ ring is introduced in the device substrate,the electric field peak of the main junction is reduced due to the transfer of the voltage from the main junction to the N~+ ring junction, and the vertical breakdown characteristic is improved significantly.Based on the Poisson equation of cylindrical coordinates,a breakdown voltage model is developed.The numerical results indicate that the breakdown voltage of the proposed device is increased by 56%in comparison to conventional LDMOS.  相似文献   

9.
On-State Breakdown Model for High Voltage RESURF LDMOS   总被引:5,自引:3,他引:2  
An analytical breakdown model under on-state condition for high voltage RESURF LDMOS is proposed.The model considers the drift velocity saturation of carriers and influence of parasitic bipolar transistor.As a result,electric field profile of n-drift in LDMOS at on-state is obtained.Based on this model,the electric SOA of LDMOS can be determined.The analytical results partially fit to our numerical (by MEDICI) and experiment results.This model is an aid to understand the device physics during on-state accurately and it also directs high voltage LDMOS design.  相似文献   

10.
An SOI LDMOS with a compound buried layer (CBL) was proposed. The CBL consists of an upper buried oxide layer (UBOX) with a Si window and two oxide steps, a polysilicon layer and a lower buried oxide layer (LBOX). In the blocking state, the electric field strengths in the UBOX and LBOX are increased from 88 V/μm of the buried oxide (BOX) in a conventional SOI (C-SOI) LDMOS to 163 V/μm and 460 V/μm by the holes located on the top interfaces of the UBOX and LBOX, respectively. Compared with the C-SOI LDMOS, the CBL LDMOS increases the breakdown voltage from 477 to 847 V, and lowers the maximal temperature by 6 K.  相似文献   

11.
为探索在薄埋氧层SOI衬底上实现超高耐压LDMOS的途径,提出了一种具有P埋层(BPL)的薄埋氧层SOI LDMOS结构,耐压1200V以上。该BPL SOI LDMOS在传统SOI LDMOS的埋氧层和N型漂移区之间引入了一个P型埋层。当器件正向截止时,N型漂移区与P埋层之间的反偏PN结将承担器件的绝大部分纵向压降。采用2维数值仿真工具Silvaco TCAD对BPL SOI LDMOS进行虚拟制造和器件仿真,结果表明该结构采用适当的参数既能实现1280V的耐压,将BOX层减薄到几百纳米以下又可以改善其热特性。  相似文献   

12.
段宝兴  张波  李肇基 《半导体学报》2006,27(10):1814-1817
提出了一种具有折叠硅表面SOI-LDMOS(FSOI-LDMOS)新结构.它是将硅表面从沟道到漏端的导电层刻蚀成相互排列的折叠状,且将栅电极在较薄的场氧化层上一直扩展到漏端.由于扩展栅电极的电场调制作用使FSOI-LDMOS在比一般SOI-LDMOS浓度高的漂移区表面,包括折叠硅槽侧面形成多数载流子积累,积累的多数载流子大大降低了漂移区的导通电阻.并且沟道反型层浓度基于折叠的硅表面而双倍增加,沟道导通电阻降低.通过三维仿真软件ISE分析,这种结构可以在低于40V左右的击穿电压下,获得超低的比导通电阻.  相似文献   

13.
针对600 V以上SOI高压器件的研制需要,分析了SOI高压器件在纵向和横向上的耐压原理。通过比较提出薄膜SOI上实现高击穿电压方案,并通过仿真预言其可行性。在埋氧层为3μm,顶层硅为1.5μm的注氧键合(Simbond)SOI衬底上开发了与CMOS工艺兼容的制备流程。为实现均一的横向电场,设计了具有线性渐变掺杂60μm漂移区的LDMOS结构。为提高纵向耐压,利用场氧技术对硅膜进行了进一步减薄。流片实验的测试结果表明,器件关态击穿电压可达600 V以上(实测832 V),开态特性正常,阈值电压提取为1.9 V,计算开态电阻为50Ω.mm2。  相似文献   

14.
A novel silicon-on-insulator (SOI) high-voltage MOSFET structure and its breakdown mechanism are presented in this paper. The structure is characterized by oxide trenches on the top interface of the buried oxide layer on partial SOI (TPSOI). Inversion charges located in the trenches enhance the electric field of the buried layer in the high-voltage blocking state, and a silicon window makes the depletion region spread into the substrate. Both of them modulate the electric field in the drift region; therefore, the breakdown voltage (BV) for a TPSOI LDMOS is greatly enhanced. Moreover, the Si window alleviates the self-heating effect. The influences of the structure parameters on device characteristics are analyzed for the proposed device structure. The TPSOI LDMOS with BV > 1200 V and the buried-layer electric field of EI > 700 V/ mum is obtained by the simulation on a 2-mum-thick SOI layer over 2-mum-thick buried oxide layer, and its maximal temperature reduces by 19 and 8.7 K in comparison with the conventional SOI and partial SOI devices.  相似文献   

15.
In this paper a new lateral double diffused metal oxide semiconductor (LDMOS) transistor on silicon-on-insulator (SOI) technology is reported. In the proposed structure a trench oxide in the drift region is reformed to reduce surface temperature. In the LDMOS devices one way for achieving high breakdown voltage is incorporating the trench oxide in the drift region. But, this strategy causes high lattice temperature in the device. So, the middle of the trench oxide in the drift region is etched and filled with the silicon to have higher thermal conductivity material and reduce the lattice temperature in the drift region. The simulation with two-dimensional ATLAS simulator shows that the novel thin trench oxide in the n-drift region of LDMOS transistor (TT-LDMOS) have lower maximum lattice temperature with an acceptable breakdown voltage in respect to the conventional LDMOS (C-LDMOS) structure with the trench oxide in the drift region. So, TT-LDMOS can be a reliable device for power transistors.  相似文献   

16.
张海鹏  许生根 《电子器件》2012,35(2):119-124
为了在薄埋氧层SOI衬底上实现超高耐压LDMOS铺平道路,提出了一种具有P埋层(BPL)的薄埋氧层SOI LDMOS 结构,耐压1200V以上.该BPL SOI LDMOS在传统SOI LDMOS的埋氧层和N型漂移区之间引入了一个P型埋层.当器件正向截止时,N型漂移区与P埋层之间的反偏PN结将承担器件的绝大部分纵向压降.采用2维数值仿真工具Silvaco TCAD对BPL SOI LDMOS进行虚拟制造和器件仿真,结果表明该结构采用适当的参数既能实现1 280 V的耐压,将BOL减薄到几百纳米以下又可以改善其热特性.  相似文献   

17.
冯曦  王纪民  刘道广 《微电子学》2006,36(5):626-629
介绍了一种改进型RF LDMOS器件。通过对传统RF LDMOS器件的工艺流程进行修改,并在漂移区上方引入场氧化层结构,改善了器件的准饱和现象。当工作在Vgs=5 V,Vds=10 V条件下时,与传统RF LDMOS器件相比,改进后RF LDMOS器件的跨导提高约81%,截止频率提高约89%,击穿电压提高约15%。  相似文献   

18.
为了获得高耐压、低导通电阻的横向双扩散MOSFET(LDMOS)器件,综合利用高介电常数(高k)薄膜技术和场板技术,设计出一种漂移区表面采用"高k薄膜+氧化层+场板"结构的功率器件,有效降低了PN结弯角高电场和场板边缘峰值电场。使用器件仿真工具MEDICI进行验证,并分析高k薄膜厚度、氧化层厚度、高k薄膜相对介电常数以及栅场板长度对器件性能的影响,最终实现了耐压达到820V、比导通电阻降至13.24Ω.mm2且性能稳定的LDMOS器件。  相似文献   

19.
提出基于衬底偏压技术的double RESURF结构,称为Sb double RESURF LDMOS。在n型衬底和n型漂移区之间嵌入p型外延层,阻挡器件阻断状态下的纵向电流通路,改变体内电场分布。衬底偏压加强漂移区电荷共享效应,降低漏极下方纵向电场峰,该技术对提高薄漂移区横向功率器件的纵向击穿电压尤其重要。结果表明,在保持较小导通电阻下,该结构较常规LDMOS击穿电压提高97%。  相似文献   

20.
《Microelectronics Journal》2001,32(5-6):497-502
We proposed a new lateral double-diffused MOS (LDMOS) structure employing a double p/n epitaxial layer, which is formed on p substrates. Trenched gate and drain are also employed to obtain uniform and high drift current density. The breakdown voltage and the specific on-resistance of the proposed LDMOS are numerically calculated by using a two-dimensional (2D) device simulator, Medici. The n drift region and upper p region of the proposed LDMOS are fully depleted in off-states employing the RESURF technique. The simulation results show that the breakdown voltage is 142 V and specific on-resistance is 183  mm2 when the cell pitch of the LDMOS is 7.5 μm. The proposed LDMOS shows better trade-off characteristics than the previous results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号