首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this study was first to compare the performance of four strong anion exchange resins (AERs) (MIEX from Orica Pty Ltd, DOWEX-11 and DOWEX-MSA from DOW chemical and IRA-938 from Rohm and Haas) for their application in drinking water treatment (natural organic matter (NOM), mineral anions (nitrate, sulfate and bromide) and pesticide removal) using bench-scale experimental procedures on a high DOC content surface water. The efficiency of MIEX for NOM and mineral anions removal was furthermore evaluated using bench-scale dose-response experiments on raw, clarified and post-ozonated waters. NOM removal was assessed using the measurement of dissolved organic carbon (DOC), UV absorbance at 254 nm (UV254) and the use of high-performance size exclusion chromatography with UV (HPSEC/UV) and fluorescence detection (HPSEC/FLUO). The MIEX and IRA938 anionic resins exhibit a faster removal of NOM and mineral anions compared to the DOWEX11 and MSA AERs. All the resins were found to be very effective with similar performances after 30 to 45 min of contact time. As expected, only limited sorption of atrazine and isoproturon (C0=1 microg/L) occurred with MIEX, DOWEX11 and MSA AERs. MIEX resin proved to be very efficient in eliminating NOM of high-molecular weight but also a large part of the smallest UV absorbing organic compounds which were refractory to coagulation/flocculation treatment. Remaining DOC levels after 30 min of contact with MIEX were found similar in raw water, clarified water and even post-ozonated water implying no DOC benefit can be gained by employing conventional treatment prior to MIEX treatment. Removal of bromide (initial concentration 110 microg/L) was also observed and ranged from 30% to 65% for resin dose increasing from 2 to 8 mL/L. T  相似文献   

2.
Potentially the most effective means of controlling disinfection by-products (DBPs) is to remove precursors before disinfection. To understand relationships between physical properties, treatability and DBP formation, nine natural organic matter (NOM) surrogates were studied. Their DBP formation and removal by coagulation, MIEX® anion exchange resin and two nanofiltration membranes was measured. Whereas treatability of NOM surrogates was explained in terms of their physicochemical properties, the same was not true of DBP formation. Hence it was not possible to selectively remove compounds which generate high amounts of DBPs. Instead, precursor removal strategies based upon empirical DBP formation potential testing are more apt. Under conditions simulating full-scale performance, MIEX® did not offer improved performance over coagulation. A hydrophobic nanofiltration membrane proved successful for removing neutral, hydrophilic surrogates, and hence is also suitable for DBP precursors of this character.  相似文献   

3.
The efficacy of a combined AER/UF (Anion Exchange Resin/Ultrafiltration) process for the polishing treatment of a high DOC (Dissolved Organic Carbon) content (>8 mgC/L) surface water was investigated at lab-scale using a strong base AER. Both resin dose and bead size had a significant impact on the kinetic removal of DOC for short contact times (i.e. <15 min). For resin doses higher than 700 mg/L and median bead sizes below 250 μm DOC removal remained constant after 30 min of contact time with very high removal rates (80%). Optimum AER treatment conditions were applied in combination with UF membrane filtration on water previously treated by coagulation-flocculation (i.e. 3 mgC/L). A more severe fouling was observed for each filtration run in the presence of AER. This fouling was shown to be mainly reversible and caused by the progressive attrition of the AER through the centrifugal pump leading to the production of resin particles below 50 μm in diameter. More important, the presence of AER significantly lowered the irreversible fouling (loss of permeability recorded after backwash) and reduced the DOC content of the clarified water to l.8 mgC/L (40% removal rate), concentration that remained almost constant throughout the experiment.  相似文献   

4.
Excess phosphorus (P) in lakes and rivers remains a major water quality problem on a global scale. As a result, new materials and innovative approaches to P remediation are required. Natural materials and waste byproduct materials from industrial processes have the potential to be effective materials for P removal from surface water. Advantages of natural and waste byproduct materials include their low-cost, abundant supply, and minimal preparation, especially compared with engineered materials, such as ion exchange resins and polymeric adsorbents. As a result, natural and waste byproduct materials are commonly referred to as low-cost materials. Despite the potential advantages of low-cost materials, there are critical gaps in knowledge that are preventing their effective use. In particular, there are limited data on the performance of low-cost materials in surface waters that have high concentrations of natural organic matter (NOM), and there are no systematic studies that track the changes in water chemistry following treatment with low-cost materials or compare their performance with engineered materials. Accordingly, the goal of this work was to evaluate and compare the effectiveness of low-cost and engineered materials for P removal from NOM-rich surface water. Seven low-cost materials and three engineered materials were evaluated using jar tests and mini-column experiments. The test water was a surface water that had a total P concentration of 132-250 μg P/L and a total organic carbon concentration of 15-32 mg C/L. Alum sludge, a byproduct of drinking water treatment, and a hybrid anion exchange resin loaded with nanosize iron oxide were the best performing materials in terms of selective P removal in the presence of NOM and minimum undesirable secondary changes to the water chemistry.  相似文献   

5.
A number of water treatment works (WTW) in the north of England (UK) have experienced problems in reducing the dissolved organic carbon (DOC) present in the water to a sufficiently low level. The problems are experienced in autumn/winter when the colour increases and the coagulant dose at the WTW needs to be increased in order to achieve sufficient colour removal. However, the DOC content of the water varies little throughout the year. To investigate this further, the water was fractionated using resin adsorption techniques into its hydrophobic (fulvic and humic acid fractions) and hydrophilic (acid and non-acid fractions) components. The fractionation process yields useful information on the changing concentration of each fraction but is time consuming and labour intensive. Here, a method of rapidly determining fraction concentration was developed using fluorescence spectroscopy. The model created used synchronous spectra of fractionated material compared against bulk water spectra and predicted the fraction concentrations to within 10% for a specific water. The model was unable to predict fraction concentrations for waters from a different watershed.  相似文献   

6.
The treatment of a high DOC content surface water (about 6mg DOC/L) using anion exchange resins (MIEX resin from Orica or IRA958 resin from Rohm and Haas) can remove up to 80% of DOC in less than 45min. The combination of coagulation prior to or after resin treatment only slightly improves the removal of DOC (0.2-0.3mg/L) but eliminates the high MW organic compounds (MW >20kDa) attributed to biopolymers (proteins and polysaccharides) that were not removed using anion exchange resins alone and that were found to be responsible for reversible fouling of UF membranes (YM 100 UF membrane from Millipore with MW cut-off of 100kDa). The combination of treatments then significantly improves the permeability of the UF membrane. Also, the combination of both treatments allows a reduction of the coagulant doses by a factor of 6 with no impact on the DOC removal and the filterability of produced waters.  相似文献   

7.
Hoon Hyung 《Water research》2009,43(9):2463-178
The first objective of this study is to examine the fate of C60 under two disposal scenarios through which pristine C60 is introduced to water containing natural organic matter (NOM). A method based on liquid-liquid extraction and HPLC to quantify nC60 in water containing NOM was also developed. When pristine C60 was added to water either in the form of dry C60 or in organic solvent, it formed water stable aggregates with characteristics similar to nC60 prepared by other methods reported in the literature. The second objective of this study is to examine the fate of the nC60 in water treatment processes, which are the first line of defense against ingestion from potable water - a potential route for direct human consumption. Results obtained from jar tests suggested that these colloidal aggregates of C60 were efficiently removed by a series of alum coagulation, flocculation, sedimentation and filtration processes, while the efficiency of removal dependent on various parameters such as pH, alkalinity, NOM contents and coagulant dosage. Colloidal aggregates of functionalized C60 could be well removed by the conventional water treatment processes but with lesser efficiency compared to those made of pristine C60.  相似文献   

8.
Coagulation in drinking water treatment has relied upon iron (Fe) and aluminium (Al) salts throughout the last century to provide the bulk removal of contaminants from source waters containing natural organic matter (NOM). However, there is now a need for improved treatment of these waters as their quality deteriorates and water quality standards become more difficult to achieve. Alternative coagulant chemicals offer a simple and inexpensive way of doing this. In this work a novel zirconium (Zr) coagulant was compared against traditional Fe and Al coagulants. The Zr coagulant was able to provide between 46 and 150% lower dissolved organic carbon (DOC) residual in comparison to the best traditional coagulant (Fe). In addition floc properties were significantly improved with larger and stronger flocs forming when the Zr coagulant was used with the median floc sizes being 930 μm for Zr; 710 μm for Fe and 450 μm for Al. In pilot scale experiments, a similar improved NOM and particle removal was observed. The results show that when optimised for combined DOC removal and low residual turbidity, the Zr coagulant out-performed the other coagulants tested at both bench and pilot scale.  相似文献   

9.
Transmission electron microscopy (TEM) coupled with electron energy loss spectroscopy (EELS) and energy dispersive X-ray spectroscopy (EDXS) was used to investigate the coagulation of natural organic matter with a ferric salt. Jar-test experiments were first conducted with a reconstituted water containing either synthetic or natural extracts of humic substances, and then with a raw water from Moselle River (France). The characterization of the freeze-dried coagulated sediment by EELS in the 250-450 eV range, showed that Fe-coagulant species predominantly associate with the carboxylic groups of organic matter, and that this interaction is accompanied by a release of previously complexed calcium ions. The variation of Fe/C elemental ratio with iron concentration provides insightful information into the coagulation mechanism of humic substances. At acid pH, Fe/C remains close to 3 over the whole range of iron concentrations investigated, while a much lower atomic ratio is expected from the value of optimal coagulant dosage. This suggests that a charge neutralization/complexation mechanism is responsible for the removal of humic colloids, the aggregates being formed with both iron-coagulated and proton-neutralized organic compounds. At pH 8, the decrease in Fe/C around optimal coagulant concentration is interpreted as a bridging of stretched humic macromolecules by Fe-hydrolyzed species. Aggregation would then result from a competition between reconformation of humic chains around coagulant species and collision of destabilized humic material. EELS also enabled a fingerpriting of natural organic substances contained in the iron-coagulated surface water, N/C elemental analyses revealing that humic colloids are removed prior to proteinic compounds.  相似文献   

10.
Aboagye G  Rowe MT 《Water research》2011,45(11):3271-3278
Mycobacterium avium subsp. paratuberculosis (Map) causes Johne’s disease of cattle and is implicated as a cause of Crohn’s disease in humans. The organism is excreted in animal faeces and can contaminate water catchment areas. This coupled with Map’s survival in the environment means that water destined for domestic use may be a source of exposure. This work was designed to determine the occurrence of Map in Lough Neagh (the largest freshwater lake in the British Isles), used as a reservoir, and in two water treatment works (WTW1 and WTW2) which abstract from the lough and which have slow sand filtration (SSF) and dissolved air flotation respectively as their principal treatment regimes. The organism was not detected in lough water samples by culture (n = 70) but 29% (20/70) were positive by PCR. In the raw water to WTW1 and WTW2 no culture positives were detected but 54% (13/24) and 58% (14/24) respectively were PCR positive. In WTW1 there were no culture positives at the SSF or final water but 31% (8/26) and 45% (9/20) respectively were PCR positive. In WTW2 similar results were obtained with 26% (6/23) and 48% (11/23) in the floccules and final water respectively. At WTW2 however one culture positive was detected in the final water. This latter finding is of concern. The inability to reach definitive conclusions indicates the need for further research, particularly in the detection methods for viable Map.  相似文献   

11.
Birnhack L  Lahav O 《Water research》2007,41(17):3989-3997
A novel post-treatment approach for desalinated water, aimed at supplying a balanced concentration of alkalinity, Ca(2+), Mg(2+) and SO(4)(2-), is introduced. The process is based on replacing excess Ca(2+) ions generated in the common H(2)SO(4)-based calcite dissolution post-treatment process with Mg(2+) ions originating from seawater. In the first step, Mg(2+) ions are separated from seawater by means of a specific ion exchange resin that has high affinity toward divalent cations (Mg(2+) and Ca(2+)) and an extremely low affinity toward monovalent cations (namely Na(+) and K(+)). In the second step, the Mg(2+)-loaded resin is contacted with the effluent of the calcite dissolution reactor and Mg(2+) and Ca(2+) are exchanged. Consequently, the excess Ca(2+) concentration in the water decreases while the Mg(2+) concentration increases. The process is stopped at a predetermined Ca(2+) to Mg(2+) ratio. All water streams used in the process are internal and form a part of the desalination plant sequence, regardless of the additional ion exchange component. The proposed process allows for the supply of cheap Mg(2+) ions, while at the same time enables the application of the cheap H(2)SO(4)-based calcite dissolution process, thus resulting in higher quality water at a cost-effective price. A case study is presented in which additional cost of supplying a Mg(2+) concentration of 12mg/L using the process is estimated at $0.004/m(3) product water.  相似文献   

12.
The performance of a special class of grafted textiles in removing metal cations from industrial wastewaters was examined in continuous reactors. The influence of various parameters on the ion exchange process (reactor geometry, inlet metal ion concentration, solution flow rate, concentration and type of reagent, etc.) was studied over the complete service cycle of the exchanger (saturation, desorption, regeneration, rinsing). Dynamic ion exchange characteristics were determined and compared with those of resins under identical operating conditions. Higher efficiency of fibrous ion exchangers compared to analogous resins, was shown at all stages of the service cycle. Results were expressed as a function of breakthrough capacity, exchanger utilisation efficiency, volume of solution treated, eluted metal concentration. The use of different reactor geometries showed two of the many possible applications of grafted textiles in water treatment processes.  相似文献   

13.
Kim HC  Dempsey BA 《Water research》2012,46(11):3714-3722
Two fractionation strategies were compared for characterizing organic components in effluent organic matter (EfOM) and natural organic matter (NOM). The first method is widely used and requires sample acidification and then re-neutralization during sequential organic removals onto resins. The second method uses a different suite of separation methods, does not require pH manipulation, and sequentially removes particles, colloids, organic acids, and hydrophobic neutrals without the need for adjusting pH. The NOM samples were dominantly organic acids while EfOM contained a broader distribution of organic functionalities so further evaluation was focused on EfOM. The new method completely removed colloidal matter from EfOM while the conventional fractionation method resulted in an increase in the percentage of EfOM >100 kDa with each fractionation step after filtration. Organic acids were removed in one fractionation step using the new method instead of three steps with the conventional method. The conventional method resulted in increased fouling after the final separation step apparently caused by production of inorganic colloids. The new fractionation method provided a clearer diagnosis that organic acids were the primary cause of fouling even though they were only 14% of EfOM organic carbon. We suggest that the new fractionation method should be considered for diagnosing the effects of NOM or EfOM on the performance of membrane filtration.  相似文献   

14.
Reactivity of natural organic matter with aqueous chlorine and bromine   总被引:18,自引:0,他引:18  
Westerhoff P  Chao P  Mash H 《Water research》2004,38(6):1502-1513
While both aqueous bromine (HOBr/OBr(-)) and chlorine (HOCl/OCl(-)) react with natural organic matter (NOM) during water treatment, limited direct parallel comparison of bromine versus chlorine has been conducted. Experiments with model compounds and natural waters indicated more efficient substitution reactions with bromine than chlorine. Kinetic experiments with NOM isolates with and without pre-ozonation were conducted to obtain second-order rate constants (k) with bromine and chlorine. Two-stage reaction kinetics (rapid initial and slower consumption stages) were observed. Bromine reacted about 10 times faster than chlorine with NOM isolates during both stages. The rapid initial stage reactions were too fast to quantify k values, but qualitative estimates ranged between 500 and 5000 M(-1)s(-1). For the slower second stage k values for bromine were 15 to 167 M(-1)s(-1) over the pH range of 5-11, and lower for chlorine (k = 0.7-5M(-1)s(-1)). Values of k correlated with initial SUVA values of NOM (UVA measured at 254 nm divided by DOC). Based upon UV/VIS and solid-state (13)C-NMR spectroscopy, chlorine addition to a NOM isolate resulted in significant oxidation of aromatic and ketone groups while bromine had significantly less change in spectra. Overall, the improved knowledge that bromine reacts faster and substitutes more efficiently than chlorine will be useful in developing strategies to control disinfection by-product formation during water treatment.  相似文献   

15.
Drewes JE  Reinhard M  Fox P 《Water research》2003,37(15):3612-3621
Microfiltration (MF) followed by reverse osmosis (RO) and soil-aquifer treatment (SAT) are the two principal technologies considered for indirect potable reuse of wastewater. This study, conducted at the Northwest Water Reclamation Plant, Mesa (Arizona), evaluated MF/RO and SAT (>6 months residence time) treated tertiary effluent with respect to organics removal. Effluent organic matter was characterized as total organic carbon (TOC), by UV absorbance (UVA), solid-state carbon-13 nuclear magnetic resonance spectroscopy, and size exclusion chromatography. Several trace organic micropollutants, including EDTA, NTA, and alkylphenolethoxylate residues, were analyzed by GC/MS. The study revealed that final TOC concentrations of MF/RO and SAT are 0.3 and 1.0 mgl(-1), respectively. Based on the characterization techniques used, the character of bulk organics present in final SAT water resembles the character of natural organic matter present in drinking water. Depending on the molecular weight cut-off, RO membranes can efficiently reject high molecular weight organic matter (characterized as humic and fulvic acids). However, approximately 40-50 percent of the remaining TOC in permeates consists of low molecular weight acids and neutrals representing a molecular weight range of approximately 500Da and less. In the SAT treated effluent, EDTA and APECs were removed to approximately 4.3 and 0.54 microg/l, respectively, but were below the detection limit in the MF/RO treated effluent.  相似文献   

16.
Kim HC  Yu MJ 《Water research》2005,39(19):4779-4789
Natural organic matter (NOM) from raw and process waters at a conventional water treatment plant was isolated into hydrophobic and hydrophilic fractions by physicochemical fractionation methods to investigate its characteristics. Formation potential of trihalomethanes (THMs) was highly influenced by the hydrophobic fraction, whereas haloacetic acids formation potential (HAAFP) depended more on the hydrophilic fraction. However the hydrophobic fraction was removed more than the hydrophilic fraction through conventional water treatment. Therefore residual hydrophilic NOM after conventional treatment needs to be removed to reduce HAAFP. Feasible additional processes are required to be evaluated by comparing preferential removal efficiency of hydrophilic NOM through pilot tests. The structural and chemical characteristics of hydrophobic NOM (i.e., humic substances (HS)) were further investigated to know how they are influenced by conventional treatment. The phenolic fraction in the hydrophobic NOM was mainly removed compared to the carboxylic fraction through water treatment, and a higher formation potential of THMs resulted from NOM with a higher phenolic content. The Fourier-transform infrared (FT-IR) and proton nuclear magnetic resonance ((1)H-NMR) employed for characterization of NOM through water treatment were insightful revealing that their results were quite close to each other. Decreases of ratio of UV absorbance at 253 and 203 nm, respectively (A(253)/A(203) ratio) and trihalomethane formation potential/dissolved organic carbon (THMFP/DOC) showed consistent trends; therefore, the A(253)/A(203) ratio may be a good indicator of tendency for the formation potential of disinfection by-products (DBPs).  相似文献   

17.
McLain JE  Williams CF 《Water research》2008,42(15):4041-4048
As the reuse of municipal wastewater escalates worldwide as a means to extend increasingly limited water supplies, accurate monitoring of water quality parameters, including Escherichia coli (E. coli), increases in importance. Chromogenic media are often used for detection of E. coli in environmental samples, but the presence of unique levels of organic and inorganic compounds alters reclaimed water chemistry, potentially hindering E. coli detection using enzyme-based chromogenic technology. Over seven months, we monitored E. coli levels using m-Coli Blue 24((R)) broth in a constructed wetland filled with tertiary-treated municipal effluent. No E. coli were isolated in the wetland source waters, but E. coli, total coliforms, and heterotrophic bacteria increased dramatically within the wetland on all sampling dates, most probably due to fecal inputs from resident wildlife populations. Confirmatory testing of isolates presumptive for E. coli revealed a 41% rate of false-positive identification using m-Coli Blue 24((R)) broth over seven months. Seasonal differences were evident, as false-positive rates averaged 35% in summer, but rose sharply to 75% in the late fall and winter. Corrected E. coli levels were significantly correlated with electrical conductivity, indicating that water chemistry may be controlling bacterial survival within the wetland. This is the first study to report that accuracy of chromogenic media for microbial enumeration in reclaimed water may show strong seasonal differences, and highlights the importance of validation of microbiological results from chromogenic media for accurate analysis of reclaimed water quality.  相似文献   

18.
Integrated fixed film activated sludge (IFAS) is a promising process for the enhancement of nitrification and denitrification in conventional activated sludge systems that need to be upgraded for biological nutrient removal (BNR), particularly when they have space limitations or need modifications that will require large monetary expenses. Several studies have reported successful implementations of IFAS at temperate zone wastewater treatment facilities, typically by placement of fixed film media into aerobic zones. However, nearly all of the implementations have not included enhanced biological phosphorus removal (EBPR) in the upgraded systems. This is possibly because the treatment plants have been operated at low mixed liquor mean cell residence times (MCRTs), and EBPR would wash out of the systems at the low temperatures encountered, making it difficult to maintain EBPR. The primary objective of this study was to investigate the incorporation of EBPR into IFAS systems, and study the interactions between the fixed biomass and the mixed liquor suspended solids with respect to substrate competition and nutrient removal efficiencies. Three pilot-scale UCT/VIP configuration systems were used, one as a control and the other two with Bioweb media integrated into some of the anoxic and aerobic reactors. The systems were operated at different MCRTs, and influent COD/TP ratios, and with split influent flows. The experimental results confirmed that EBPR could be incorporated successfully into IFAS systems, but the redistribution of biomass resulting from the integration of fixed film media, and the competition of organic substrate between EBPR and denitrification would affect performances. Also, the integration of fixed film media into the anoxic reactors affected performances differently from media in aerobic reactors.  相似文献   

19.
Xue S  Zhao QL  Wei LL  Ren NQ 《Water research》2009,43(2):499-4736
Soil column experiments were performed to investigate the behavior and characteristics of dissolved organic matter (DOM) during soil aquifer treatment (SAT), and to differentiate among the mechanisms responsible for the changes in the structural and functional properties of DOM during SAT. To determine the biological transformation of DOM, biodegradability tests using a biodegradation-column system were conducted. DOM was fractionated using XAD resins into 5 fractions: hydrophobic acid (HPO-A), hydrophobic neutral (HPO-N), transphilic acid (TPI-A), transphilic neutral (TPI-N) and hydrophilic fraction (HPI). Dissolved organic carbon (DOC) was removed by 70% during SAT, and the sorption and anaerobic biodegradation in SAT led to a DOC reduction of 27.4%. The significant changes in fluorescence properties of DOM were observed during SAT. However, the sorption and anaerobic biodegradation in SAT seemed to have no significant effect on the chemical structure of fluorescing constituents in DOM. The DOM fractions exhibited different changes in Fourier-transform infrared (FT-IR) spectra characteristics during SAT. Biodegradation resulted in the enrichment of aromatic structures and the decreased content of the oxygen-containing functional groups, such as CO and C-O, in DOM. On the other hand, the production of C-O and amide-2 functional groups occurred as a result of the sorption combined with anaerobic biodegradation in SAT.  相似文献   

20.
Polar water-soluble organic contaminants were analysed in the dissolved liquid water phase of river water samples from the Danube River and its major tributaries (within the Joint Danube Survey 2). Analyses were performed by solid-phase extraction (SPE) followed by triple-quadrupole liquid chromatography mass spectrometry (LC-MS2). In total, 34 different polar organic compounds were screened. Focus was given on pharmaceutical compounds (such as ibuprofen, diclofenac, sulfamethoxazole, carbamazepine), pesticides and their degradation products (e.g. bentazone, 2,4-D, mecoprop, atrazine, terbutylazine, desethylterbutylazine), perfluorinated acids (PFOS; PFOA), and endocrine disrupting compounds (nonylphenol, NPE1C, bisphenol A, estrone). The most relevant polar compounds identified in the Danube River basin in terms of frequency of detection, persistency, and concentration levels were 1H-benzotriazole (median concentration 185 ng/L), caffeine (87 ng/L), tolyltriazole (73 ng/L), nonylphenoxy acetic acid (49 ng/L), carbamazepine (33 ng/L), 4-nitrophenol (29 ng/L), 2,4-dinitrophenol (19 ng/L), PFOA (17 ng/L), sulfamethoxazole (16 ng/L), desethylatrazine (11 ng/L), and 2,4-D (10 ng/L). The highest contamination levels were found in the area around Budapest and in the tributary rivers Arges (Romania), Timok (Bulgaria), Rusenski Lom (Bulgaria), and Velika Morava (Serbia).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号