首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Growth hormone (GH) signaling requires activation of the GH receptor (GHR)-associated tyrosine kinase, JAK2. JAK2 activation by GH is believed to facilitate initiation of various pathways including the Ras, mitogen-activated protein kinase, STAT, insulin receptor substrate (IRS), and phosphatidylinositol 3-kinase systems. In the present study, we explore the biochemical and functional involvement of the Src homology 2 (SH2)-containing protein-tyrosine phosphatase, SHP-2, in GH signaling. GH stimulation of murine NIH 3T3-F442A fibroblasts, cells that homologously express GHRs, resulted in tyrosine phosphorylation of SHP-2. As assessed specifically by anti-SHP-2 coimmunoprecipitation and by affinity precipitation with a glutathione S-transferase fusion protein incorporating the SH2 domains of SHP-2, GH induced formation of a complex of tyrosine phosphoproteins including SHP-2, GHR, JAK2, and a glycoprotein with properties consistent with being a SIRP-alpha-like molecule. A reciprocal binding assay using IM-9 cells as a source of SHP-1 and SHP-2 revealed specific association of SHP-2 (but not SHP-1) with a glutathione S-transferase fusion incorporating GHR cytoplasmic domain residues 485-620, but only if the fusion was first rendered tyrosine-phosphorylated. GH-dependent tyrosine phosphorylation of SHP-2 was also observed in murine 32D cells (which lack IRS-1 and -2) stably transfected with the GHR. Further, GH-dependent anti-SHP-2 coimmunoprecipitation of the Grb2 adapter protein was detected in both 3T3-F442A and 32D-rGHR cells, indicating that biochemical involvement of SHP-2 in GH signaling may not require IRS-1 or -2. Finally, GH-induced transactivation of a c-Fos enhancer-driven luciferase reporter in GHR- and JAK2-transfected COS-7 cells was significantly reduced when a catalytically inactive SHP-2 mutant (but not wild-type SHP-2) was coexpressed; in contrast, expression of a catalytically inactive SHP-1 mutant allowed modestly enhanced GH-induced transactivation of the reporter in comparison with that found with expression of wild-type SHP-1. Collectively, these biochemical and functional data imply a positive role for SHP-2 in GH signaling.  相似文献   

2.
Critical intracellular signals in normal and malignant cells are transmitted by the adaptor protein Grb2 by means of its Src homology 2 (SH2) domain, which binds to phosphotyrosyl (pTyr) residues generated by the activation of tyrosine kinases. To understand this important control point and to design inhibitors, previous investigations have focused on the molecular mechanisms by which the Grb2 SH2 domain selectively binds pTyr containing peptides. In the current study, we demonstrate that the Grb2 SH2 domain can also bind in a pTyr independent manner. Using phage display, an 11-amino acid cyclic peptide, G1, has been identified that binds to the Grb2 SH2 domain but not the src SH2 domain. Synthetic G1 peptide blocks Grb2 SH2 domain association (IC50 10-25 microM) with a 9-amino acid pTyr-containing peptide derived from the SHC protein (pTyr317). These data and amino acid substitution analysis indicate that G1 interacts in the phosphopeptide binding site. G1 peptide requires a YXN sequence similar to that found in natural pTyr-containing ligands, and phosphorylation of the tyrosine increases G1 inhibitory activity. G1 also requires an internal disulfide bond to maintain the active binding conformation. Since the G1 peptide does not contain pTyr, it defines a new type of SH2 domain binding motif that may advance the design of Grb2 antagonists.  相似文献   

3.
The oncogenic Bcr-Abl variant of the c-Abl tyrosine kinase transforms cells by a mechanism dependent on activation of the stress-activated protein kinase (SAPK). Other work has shown that c-Abl interacts with the SHPTP1 protein tyrosine phosphatase in induction of SAPK activity by genotoxic stress. The present studies demonstrate that Bcr-Abl binds constitutively to SHPTP1. We show that Bcr-Abl phosphorylates SHPTP1 on C-terminal Y536 and Y564 sites. The functional significance of the Bcr-Abl/SHPTP1 interaction is supported by the finding that SHPTP1 regulates Bcr-Abl-induced SAPK activity. Importantly, SHPTP1 also decreases Bcr-Abl-dependent transformation of fibroblasts. These findings indicate that SHPTP1 functions as a tumor suppressor in cells transformed by Bcr-Abl.  相似文献   

4.
The Tpr-Met oncoprotein, which is a member of a family of tyrosine kinase oncoproteins generated following genomic rearrangement, consists of the catalytic kinase domain of the hepatocyte growth factor/scatter factor receptor tyrosine kinase (Met) fused downstream from sequences encoded by the tpr gene. We have previously demonstrated that a single tyrosine residue in the carboxyl terminus, Tyr489, is highly phosphorylated and is essential for efficient transformation of Fr3T3 fibroblasts by Tpr-Met and for the association of Tpr-Met with the Grb2 adaptor protein and phosphatidylinositol 3'-kinase. We show here that Tyr489 is also required for association of Tpr-Met with phospholipase Cgamma and the tyrosine phosphatase, SHPTP2/Syp. To distinguish which of these substrates are required for cell transformation by the Tpr-Met oncoprotein, we generated a novel Tpr-Met mutant that selectively fails to associate with the Grb2 adaptor protein. Utilizing this mutant, together with additional Tpr-Met mutants containing Tyr to Phe substitutions, we have demonstrated that transformation of Fr3T3 fibroblasts by the Tpr-Met oncoprotein is dependent upon pathways downstream of Shc and Grb2 and that pathways downstream of phosphatidylinositol 3'-kinase, phospholipase Cgamma, and SHPTP2/Syp are insufficient for transformation.  相似文献   

5.
Receptor tyrosine phosphorylation is crucial for signal transduction by creating high affinity binding sites for Src homology 2 domain-containing molecules. By expressing the intracellular domain of Flt-1/vascular endothelial growth factor receptor-1 in the baculosystem, we identified two major tyrosine phosphorylation sites at Tyr-1213 and Tyr-1242 and two minor tyrosine phosphorylation sites at Tyr-1327 and Tyr-1333 in this receptor. This pattern of phosphorylation of Flt-1 was also detected in vascular endothelial growth factor-stimulated cells expressing intact Flt-1. In vitro protein binding studies using synthetic peptides and immunoblotting showed that phospholipase C-gamma binds to both Y(p)1213 and Y(p)1333, whereas Grb2 and SH2-containing tyrosine protein phosphatase (SHP-2) bind to Y(p)1213, and Nck and Crk bind to Y(p)1333 in a phosphotyrosine-dependent manner. In addition, unidentified proteins with molecular masses around 74 and 27 kDa bound to Y(p)1213 and another of 75 kDa bound to Y(p)1333 in a phosphotyrosine-dependent manner. SHP-2, phospholipase C-gamma, and Grb2 could also be shown to bind to the intact Flt-1 intracellular domain. These results indicate that a spectrum of already known as well as novel phosphotyrosine-binding molecules are involved in signal transduction by Flt-1.  相似文献   

6.
Insulin-like growth factor I (IGF-I) is a potent neurotropic factor promoting the differentiation and survival of neuronal cells. SH-SY5Y human neuroblastoma cells are a well characterized in vitro model of nervous system growth. We report here that IGF-I stimulated the tyrosine phosphorylation of the type I IGF receptor (IGF-IR) and insulin receptor substrate-2 (IRS-2) in a time- and concentration-dependent manner. These cells lacked IRS-1. After being tyrosine phosphorylated, IRS-2 associated transiently with downstream signaling molecules, including phosphatidylinositol 3-kinase (PI 3-K) and Grb2. Treatment of the cells with PI 3-K inhibitors (wortmannin and LY294002) increased IGF-I-induced tyrosine phosphorylation of IRS-2. We also observed a concomitant increase in the mobility of IRS-2, suggesting that PI 3-K mediates or is required for IRS-2 serine/threonine phosphorylation, and that this phosphorylation inhibits IRS-2 tyrosine phosphorylation. Treatment with PI 3-K inhibitors induced an increased association of IRS-2 with Grb2, probably as a result of the increased IRS-2 tyrosine phosphorylation. However, even though the PI 3-K inhibitors enhanced the association of Grb2 with IRS-2, these compounds suppressed IGF-I-induced mitogen-activated protein kinase activation and neurite outgrowth. Together, these results indicate that although PI 3-K participates in a negative regulation of IRS-2 tyrosine phosphorylation, its activity is required for IGF-IR-mediated mitogen-activated protein kinase activation and neurite outgrowth.  相似文献   

7.
Lipoarabinomannan (LAM) is a putative virulence factor of Mycobacterium tuberculosis that inhibits monocyte functions, and this may involve antagonism of cell signaling pathways. The effects of LAM on protein tyrosine phosphorylation in cells of the human monocytic cell line THP-1 were examined. LAM promoted tyrosine dephosphorylation of multiple cell proteins and attenuated phorbol 12-myristate 13-acetate-induced activation of mitogen-activated protein kinase. To examine whether these effects of LAM could be related to activation of a phosphatase, fractions from LAM-treated cells were analyzed for dephosphorylation of para-nitrophenol phosphate. The data show that LAM induced increased phosphatase activity associated with the membrane fraction. The Src homology 2 containing tyrosine phosphatase 1 (SHP-1) is important for signal termination and was examined as a potential target of LAM. Exposure of cells to LAM brought about (i) an increase in tyrosine phosphorylation of SHP-1, and (ii) translocation of the phosphatase to the membrane. Phosphatase assay of SHP-1 immunoprecipitated from LAM-treated cells, using phosphorylated mitogen-activated protein kinase as substrate, indicated that LAM promoted increased activity of SHP-1 in vivo. LAM also activated SHP-1 directly in vitro. Exposure of cells to LAM also attenuated the expression of tumor necrosis factor-alpha, interleukin-12, and major histocompatibility class II molecules. These results suggest that one mechanism by which LAM deactivates monocytes involves activation of SHP-1.  相似文献   

8.
CrkII adaptor protein becomes tyrosine-phosphorylated upon various types of stimulation. We examined whether tyrosine 221, which has been shown to be phosphorylated by c-Abl, was phosphorylated also by other tyrosine kinases, such as epidermal growth factor (EGF) receptor. For this purpose, we developed an antibody that specifically recognizes Tyr221-phosphorylated CrkII, and we demonstrated that CrkII was phosphorylated on Tyr221 upon EGF stimulation. When NRK cells were stimulated with EGF, the tyrosine-phosphorylated CrkII was detected at the periphery of the cells, where ruffling is prominent, suggesting that signaling to CrkII may be involved in EGF-dependent cytoskeletal reorganization. The EGF-dependent phosphorylation of CrkII was also detected in a c-Abl-deficient cell line. Moreover, recombinant CrkII protein was phosphorylated in vitro by EGF receptor. These results strongly suggest that EGF receptor directly phosphorylates CrkII. Mutational analysis revealed that the src homology 2 domain was essential for the phosphorylation of CrkII by EGF receptor but not by c-Abl, arguing that these kinases phosphorylate CrkII by different phosphorylation mechanisms. Finally, we found that the CrkII protein phosphorylated upon EGF stimulation did not bind to the phosphotyrosine-containing peptide and that CrkII initiated dissociation from EGF receptor within 3 min even with the sustained tyrosine phosphorylation of EGF receptor. This result implicated phosphorylation of Tyr221 in the negative regulation of the src homology 2-mediated binding of CrkII to EGF receptor.  相似文献   

9.
Activation of the endogenous protein kinase Cs in human kidney fibroblast (293) cells was found in the present study to inhibit the subsequent ability of insulin to stimulate the tyrosine phosphorylation of an expressed insulin receptor substrate-1. This inhibition was also observed in an in vitro phosphorylation reaction if the insulin receptor and its substrate were both isolated from cells in which the protein kinase C had been activated. To test whether serine phosphorylation of the insulin receptor substrate-1 was contributing to this process, serine 612 of this molecule was changed to an alanine. The insulin-stimulated tyrosine phosphorylation and the associated phosphatidylinositol 3-kinase activity of the expressed mutant were found to be comparable to those of the expressed wild-type substrate. However, unlike the wild-type protein, activation of protein kinase C did not inhibit the insulin-stimulated tyrosine phosphorylation of the S612A mutant nor its subsequent association with phosphatidylinositol 3-kinase. Tryptic peptide mapping of in vivo labeled IRS-1 and the S612A mutant revealed that PMA stimulates the phosphorylation of a peptide from wild-type IRS-1 that is absent from the tryptic peptide maps of the S612A mutant. Moreover, a synthetic peptide containing this phosphoserine and its nearby tyrosine was found to be phosphorylated by the insulin receptor to a much lower extent than the same peptide without the phosphoserine. Activation of protein kinase C was found to stimulate by 10-fold the ability of a cytosolic kinase to phosphorylate this synthetic peptide as well as the intact insulin receptor substrate-1. Finally, cytosolic extracts from the livers of ob/ob mice showed an 8-fold increase in a kinase activity capable of phosphorylating this synthetic peptide, compared to extracts of livers from lean litter mates. These results indicate that activation of protein kinase C stimulates a kinase which can phosphorylate insulin receptor substrate-1 at serine 612, resulting in an inhibition of insulin signaling in the cell, posing a potential mechanism for insulin resistance in some models of obesity.  相似文献   

10.
B-cell antigen receptor (BCR) stimulation induces tyrosine phosphorylation of the Shc adaptor protein and its association with Grb2. The Shc/Grb2 complex may be involved in Ras activation, since Grb2 interacts with the guanine nucleotide exchange factor Sos. We reveal here an additional complexity of the BCR-induced Shc/Grb2 complex: it contains tyrosine phosphorylated proteins of 130, 110 and 75 kDa. The 130 kDa molecule inducibly associates with Shc, while the 75 kDa protein interacts with the carboxy-terminal SH3 domain of Grb2. The 110 kDa molecule is defined as Cbl, the product of the c-cbl oncogene, which is strongly phosphorylated on tyrosine upon BCR stimulation. Cbl constitutively interacts with the SH3 domains of Grb2, with a preference for the amino-terminal domain, and is in this way recruited to Shc upon BCR stimulation. Immunodepletion studies showed that Grb2-associated Cbl can be phosphorylated by BCR-induced tyrosine kinases independent of a Shc/Grb2 interaction. This indicates that the BCR can also couple to a Grb2 complex without the involvement of Shc. Cbl not only interacts with Grb2, but also with the adaptor protein Crk. In contrast to its constitutive interaction with Grb2, tyrosine-phosphorylated Cbl only associates with Crk after BCR stimulation. In summary, we observe that the BCR activates Shc/Grb2-, Grb2- and Crk adaptor complexes of distinct composition, which may allow selective coupling to different signal transduction cascades. Cbl participates in all three adaptor complexes and is tyrosine phosphorylated upon BCR stimulation, pointing to a central role for this molecule in the regulation of antigen receptor-induced B cell responses.  相似文献   

11.
The adapter protein Shc has been implicated in mitogenic signaling via growth factor receptors, antigen receptors and cytokine receptors. Recent studies have suggested that tyrosine phosphorylation of Shc may play a key role in T lymphocyte proliferation via interaction of phosphorylated Shc with downstream molecules involved in activation of Ras and Myc proteins. However, the sites on Shc that are tyrosine phosphorylated in response to TCR engagement and the ability of different T cell tyrosine kinases to phosphorylate Shc have not been defined. In this report, we show that during TCR signaling, the tyrosines Y239, Y240 and Y317 of Shc are the primary sites of tyrosine phosphorylation. Mutation of all three tyrosines completely abolished tyrosine phosphorylation of Shc following TCR stimulation. Our data also suggest that multiple T cell tyrosine kinases contribute to tyrosine phosphorylation on Shc. In T cells, CD4/Lck-dependent tyrosine phosphorylation on Shc was markedly diminished when Y317 was mutated, suggesting a preference of Lck for the Y317 site. The syk-family kinases (Syk and ZAP-70) were able to phosphorylate the Y239 and Y240 sites, and less efficiently the Y317 site. Moreover, co-expression of Syk or ZAP-70 with Lck resulted in enhanced phosphorylation of Shc on all three sites, suggesting a synergy between the syk-family and scr-family kinases. Of the two potential Grb2 binding sites (Y239 and Y317), Y239 appears to play a greater role in recruiting Sos through Grb2. These studies have implications for Ras activation and mitogenic signaling during T cell activation.  相似文献   

12.
Like many other cytokines and growth factors, interleukin-6 (IL-6) activates p21ras. However, the precise biochemical mechanisms inducing this activation are unknown. Therefore, we investigated the effects of IL-6 on some recently identified signaling intermediates, Shc (Src homology and collagen) and Grb2 (growth factor receptor bound protein 2), known to activate p21ras. In the multiple myeloma cell line LP-1, IL-6 stimulated the tyrosine phosphorylation of Shc in a time- and concentration-dependent manner. This led to the complex formulation of Shc with Grb2, an adaptor protein known to relocate a p21ras-GDP exchange factor. Sos1 (Son-of-sevenless), to the cell membrane. Taken together, these findings suggest that IL-6 might activate the Ras signaling pathway via tyrosine phosphorylation of Shc and subsequent recruitment of Grb2. Further studies will elucidate which of the IL-6 receptor associated non-receptor tyrosine kinases of the Src kinase or Janus kinase family, mediate these effects.  相似文献   

13.
14.
Grb2-associated binder-1 (Gab-1) has been identified recently in a cDNA library of glioblastoma tumors and appears to play a central role in cellular growth response, transformation, and apoptosis. Structural and functional features indicate that Gab-1 is a multisubstrate docking protein downstream in the signaling pathways of different receptor tyrosine kinases, including the epidermal growth factor receptor (EGFR). Therefore, the aim of the study was to characterize the phosphorylation of recombinant human Gab-1 (hGab-1) protein by EGFR in vitro. Using the pGEX system to express the entire protein and different domains of hGab-1 as glutathione S-transferase proteins, kinetic data for phosphorylation of these proteins by wheat germ agglutinine-purified EGFR and the recombinant EGFR (rEGFR) receptor kinase domain were determined. Our data revealed similar affinities of hGab-1-C for both receptor preparations (KM = 2.7 microM for rEGFR vs 3.2 microM for WGA EGFR) as well as for the different recombinant hGab-1 domains. To identify the specific EGFR phosphorylation sites, hGab-1-C was sequenced by Edman degradation and mass spectrometry. The entire protein was phosphorylated by rEGFR at eight tyrosine residues (Y285, Y373, Y406, Y447, Y472, Y619, Y657, and Y689). Fifty percent of the identified radioactivity was incorporated in tyrosine Y657 as the predominant peak in HPLC analysis, a site exhibiting features of a potential Syp (PTP1D) binding site. Accordingly, GST-pull down assays with A431 and HepG2 cell lysates showed that phosphorylated intact hGab-1 was able to bind Syp. This binding appears to be specific, because it was abolished by changing the Y657 of hGab-1 to F657. These results demonstrate that hGab-1 is a high-affinity substrate for the EGFR and the major tyrosine phosphorylation site Y657 in the C terminus is a specific binding site for the tyrosine phosphatase Syp.  相似文献   

15.
Activating mutations in the Kit receptor tyrosine kinase have been identified in both rodent and human mast cell leukemia. One activating Kit mutation substitutes a valine for aspartic acid at codon 816 (D816V) and is frequently observed in human mastocytosis. Mutation at the equivalent position in the murine c-kit gene, involving a substitution of tyrosine for aspartic acid (D814Y), has been described in the mouse mastocytoma cell line P815. We have investigated the mechanism of oncogenic activation by this mutation. Expression of this mutant Kit receptor tyrosine kinase in a mast cell line led to the selective tyrosine phosphorylation of a 130-kDa protein and the degradation, through the ubiquitin-dependent proteolytic pathway, of a 65-kDa phosphoprotein. The 65-kDa protein was identified as the src homology domain 2 (SH2)-containing protein tyrosine phosphatase SHP-1, a negative regulator of signaling by Kit and other hematopoietic receptors, and the protein product of the murine motheaten locus. This mutation also altered the sites of receptor autophosphorylation and peptide substrate selectivity. Thus, this mutation activates the oncogenic potential of Kit by a novel mechanism involving an alteration in Kit substrate recognition and the degradation of SHP-1, an attenuator of the Kit signaling pathway.  相似文献   

16.
The Shc adaptor protein, hereafter referred to as ShcA, possesses two distinct phosphotyrosine-recognition modules, a C-terminal Src homology 2 (SH2) domain and an N-terminal phosphotyrosine-binding (PTB) domain, and is itself phosphorylated on tyrosine in response to many extracellular signals. Phosphorylation of human ShcA at Tyr-317 within its central (CH1) region induces binding to the Grb2 SH2 domain and is thereby implicated in activation of the Ras pathway. Two shc-related genes (shcB and shcC) have been identified in the mouse. shcB is closely related to human SCK, while shcC has not yet been found in other organisms. The ShcC protein is predicted to have a C-terminal SH2 domain, a CH1 region with a putative Grb2-binding site, and an N-terminal PTB domain. The ShcC and ShcB SH2 domains bind phosphotyrosine-containing peptides and receptors with a specificity related to, but distinct from, that of the ShcA SH2 domain. The ShcC PTB domain specifically associates in vitro with the autophosphorylated receptors for nerve growth factor and epidermal growth factor. These results indicate that ShcC has functional SH2 and PTB; domains. In contrast to shcA, which is widely expressed, shcC RNA and proteins are predominantly expressed in the adult brain. These results suggest that ShcC may mediate signaling from tyrosine kinases in the nervous system, such as receptors for neurotrophins.  相似文献   

17.
Interleukin-3 (IL-3) is a hematopoietic growth factor receptor which stimulates the proliferation of multilineage progenitor cells. It is known that IL-3 stimulates tyrosine phosphorylation while transducing a mitogenic signal. The signal transduction pathways activated by the IL-3 receptor, however, are not fully understood. In this study a protein tyrosine phosphatase has been over-expressed in the IL-3 dependent, murine myeloid progenitor cell line, 32D cl3 in order to test whether altering the levels of tyrosine phosphorylation would change IL-3 stimulated proliferation. These cells were transfected with a metal-inducible expression vector containing a rat cDNA encoding PTP1. A low basal level of rat PTP1 message and protein was detected in cells transfected with the PTP1 vector, and zinc treatment resulted in a three- to fourfold increase in the amount of PTP1 message, protein and catalytic activity. Over-expression of PTP1 resulted in a two- to threefold decrease in IL-3 stimulated proliferation. Cells over-expressing PTP1 also exhibited decreased levels of tyrosine phosphorylation; phosphorylation of the IL-3 receptor beta subunit and the Shc protein were both dramatically decreased. Thus, PTP1 over-expression negatively modulated IL-3 signal transduction. To identify potential substrates of PTP1, 32D cl3 cells were transfected with a catalytically inactive PTP1 mutant, PTP1(C/S). Three tyrosine-phosphorylated proteins of MW 140, 79 and 69 k coprecipitated with PTP1(C/S). We believe that the 140 kDa protein represents the beta subunit of the IL-3 receptor. In addition, a GST-fusion protein containing active PTP1 dephosphorylated the beta-subunit in an in vitro assay. By immunofluorescent microscopy over-expressed PTP1(C/S) co-localized largely with calnexin, an endoplasmic reticulum-associated protein. Immunofluorescent microscopy also indicated that PTP1(C/S) and the beta subunit co-localized at discrete sites at the plasma membrane and around a cytoplasmic organelle where most of the beta subunit was located. These observations suggest PTP1 over-expression may down-regulate the growth response to IL-3 through dephosphorylation of the IL-3 receptor, perhaps in an intracellular compartment, thereby inhibiting propagation of the IL-3 mitogenic signal.  相似文献   

18.
Aggregation of many cell-surface receptors results in tyrosine phosphorylation of numerous proteins. We previously observed the tyrosine phosphorylation of the platelet/endothelial cell adhesion molecule, PECAM-1 (CD31), after FcepsilonRI stimulation in rat basophilic leukemia RBL-2H3 cells. Here we found that PECAM-1 was also transiently tyrosine-phosphoryated after adherence of these cells to fibronectin. Similarly aggregation of the T cell receptor on Jurkat cells also induced this tyrosine phosphorylation. The protein-tyrosine phosphatase SHP-2 is a widely expressed cytosolic enzyme with two Src homology 2 (SH2) domains. SHP-2, but not the related protein-tyrosine phosphatase SHP-1, associated with PECAM-1. This association of the two proteins correlated with the extent of the tyrosine phosphorylation of PECAM-1. A fusion protein containing the two SH2 domains of SHP-2 precipitated PECAM-1 from cell lysates and also directly bound to phosphorylated PECAM-1. In immune precipitate phosphatase assays, there was tyrosine dephosphorylation of PECAM-1. Therefore, integrin and immune receptor activation results in tyrosine phosphorylation of PECAM-1 and the binding of the protein-tyrosine phosphatase SHP-2, which could regulate receptor-mediated signaling in cells.  相似文献   

19.
A subunit-specific antibody against the N-methyl-D-aspartate (NMDA) receptor NR2D protein along with an antiphosphotyrosine antibody were employed to examine the developmental profile of the tyrosine phosphorylation of NR2D and its regulation by a protein phosphatase inhibitor in rat brain. NMDA receptor proteins from the thalamus at postnatal days 1, 7, 21, and 49 were solubilized under denaturing conditions and used in immunoprecipitations with these antibodies followed by quantitative immunoblot analysis of NR2D protein in the resulting immunopellets. The results indicate that the NR2D subunit is tyrosine phosphorylated in the brain. The quantified data examining the developmental profile of tyrosine phosphorylation of NR2D in the thalamus show that the level of tyrosine phosphorylation of NR2D protein increases five- to sixfold during development. In addition, the protein phosphatase inhibitor pervanadate (vanadyl hydroperoxide) was found to increase tyrosine phosphorylation of NR2D subunit threefold in brain slices, implying an active cycle of phosphorylation and dephosphorylation in situ. These studies demonstrate developmentally regulated tyrosine phosphorylation of NR2D protein in vivo, suggesting that tyrosine phosphorylation may be important for regulating the functions of this NMDA receptor subunit in the mammalian central nervous system.  相似文献   

20.
Formation of a complex of the nucleotide exchange factor Sos, the SH2 and SH3 containing adaptor protein Grb2/Sem-5 and tyrosine phosphorylated EGF receptor and Shc has been implicated in the activation of Ras by epidermal growth factor (EGF) in fibroblasts: related mechanisms for activation of Ras operate in other cell types. An increase in the apparent molecular weight of Sos has been reported to occur after several minutes of receptor stimulation due to phosphorylation by mitogen-activated protein (MAP) kinases. We report here that treatment of human peripheral blood T lymphoblasts with phorbol esters causes a similar shift in mobility of Sos. This modification of Sos does not alter its ability to bind Grb2, but correlates with strong inhibition of the binding of the Sos/Grb2 complex to tyrosine phosphorylated sequences, either a tyrosine phosphopeptide in cell lysates or p36 in intact cells. This effect, along with the mobility shift of Sos, can be mimicked in vitro by phosphorylation of Sos by the mitogen-activated protein kinase, ERK1. A novel negative feedback mechanism therefore exists whereby activation of MAP kinases through Ras results in the uncoupling of the Sos/Grb2 complex from tyrosine kinase substrates without blocking the interaction of Sos with Grb2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号