首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We have successfully synthesized both enantiomers of a novel chiral ionic liquid, (R)- and (S)-[(3-chloro-2-hydroxypropyl) trimethylammonium][bis((trifluoromethyl)sulfonyl)amide] ((R)- and (S)-[CHTA]+[Tf2N]-) in optically pure form by a simple ion exchange reaction from corresponding chloride salts that are commercially available. In addition to the ease of preparation, this chiral IL has relatively high thermal stability (up to 300 degrees C), is liquid at room temperature (glass transition temperature of -58.4 degrees C), and exhibits strong enantiomeric recognition. The high solubility power and strong enantiomeric recognition ability make it possible to use this chiral IL to solubilize an analyte and to induce diastereomeric interactions for the determination of enantiomeric purity. In fact, we have successfully developed a novel method based on the near-infrared technique with this chiral IL serving both as solvent and as a chiral selector for the determination of enantiomeric purity. Enantiomeric compositions of a variety of pharmaceutical products and amino acids with different shape, size, and functional groups can be sensitively (milligram concentration) and accurately (enantiomeric excess as low as 0.6%) determined by use of this method.  相似文献   

2.
We report on the separation and on-line distinction of (R,S)-3,5-dinitrobenzoyl leucine (DNB-Leu) enantiomers with non-aqueous capillary electrophoresis (CE) and Fourier transform infrared (FT-IR) spectroscopic detection using O-(tert-butyl carbamoyl) quinine (tBuCQN) as the chiral selector (CS). Due to stereoselective intermolecular interactions--particularly ionic interactions, hydrogen bonding, and pi-pi-interactions--the enantiomers undergo enantioselective complex and ion-pair formation, respectively, with the CS enabling CE separation and direct identification with FT-IR detection. Especially the (S)-enantiomer of the analyte shows significant changes in the mid-infrared region upon complexation, allowing for a clear spectral distinction between both enantiomers. In this way FT-IR spectroscopy represents a novel and attractive detection method for CE enantiomeric separations providing qualitative stereochemical information on the interactions between the chiral selector and the enantiomers, which is hardly accessible by other CE detection methods.  相似文献   

3.
We present a new method for separation of enantiomers with high-field asymmetric waveform ion mobility spectrometry (FAIMS), coupled to mass spectrometric detection. Upon addition of an appropriate chiral reference compound to the analyte solution and subsequent ionization of the solution by electrospray ionization, analyte enantiomers formed diastereomeric complexes, which were potentially separable by FAIMS. The methodology being developed is intended to be general, but here amino acid analytes are specifically considered. In the examples presented herein, six pairs of amino acid enantiomers were successfully separated as metal-bound trimeric complexes of the form [MII(L-Ref)2(D/L-A)-H]+, where MII is a divalent metal ion, L-Ref is an amino acid in its L form acting as chiral reference compound, and A is the amino acid analyte. For example, D- and L-tryptophan were separated in FAIMS as [NiII(L-Asn)2(D-Trp)-H]+ and [NiII(L-Asn)2(L-Trp)-H]+. As FAIMS separation typically takes place over a time scale of only a few hundred milliseconds, the presented separation method opens new possibilities for rapid analysis of one analyte enantiomer in the presence of the other enantiomer. Preliminary quantification results are presented, which suggest that fast and sensitive quantitative chiral analyses can be performed with FAIMS. Method limitations are discussed in terms of diverse phenomena, which are not yet understood.  相似文献   

4.
A simple strategy for preserving and enhancing the chiral recognition capacity of polymer-embedded chiral selectors is proposed, capitalizing on a temporary blockage of the receptor binding site with tightly binding analytes during the polymerization process. We demonstrate that the copolymerization of a quinine tert-butylcarbamate selector monomer with chiral (and achiral) 3,5-dichlorobenzoyl amino acids allows one to control to a certain extent the binding characteristics of the resultant polymeric chiral stationary phases. The structural and stereochemical requirements of the templating analytes for maximizing the chiral recognition capacity of the polymer-embedded selectors are probed. The chromatographic chiral recognition characteristics of the analyte-templated polymeric chiral stationary phases are analyzed with respect to binding capacities and affinities and compared to those obtained with a conventional silica-based surface-grafted reference material. Changes in substrate-specific enantioselectivity originating from analyte templating are also addressed.  相似文献   

5.
All-R/all-S enantiomers of oligoalanines (Ala(n), n = 1-10) with N-terminal protection group have been separated by HPLC on chiral stationary phases based on various cinchona alkaloid selectors. Structure-enantioselectivity relationships derived by extensive selector structure optimization provided insights into binding mechanisms and chiral recognition. Their interpretation was supported by X-ray crystal structures of amino acid and dipeptide, respectively, in complex with chiral selector. Optimized selectors have bulky elements representing steric barriers and deep binding pockets that afforded very high enantioselectivities; e.g., for the all-R and all-S enantiomers of N-(3,5-dinitrobenzoyl)alanylalanine, an alpha-value of 20.0 (corresponding to deltadeltaG of -7.43 kJ/mol) was obtained with a chiral stationary phase based on 6'-(neopentoxy)-9-O-tert-butylcarbamoylcinchonidine. Further, a chiral stationary phase based on 1,4-bis(9-O-quinidinyl)phthalazine was able to distinguish between the all-R and all-S enantiomers of hepta- to decaalanine peptides with enantioselectivity values between 1.8 and 1.9, corresponding to deltadeltaG of -1.46 and -1.59 kJ/mol, respectively.  相似文献   

6.
Zu C  Brewer BN  Wang B  Koscho ME 《Analytical chemistry》2005,77(15):5019-5027
Derivatives of the chiral selector N-(3,5-dinitrobenzoyl)leucine were prepared and used as chiral selectors for enantiomer discrimination in single-stage electrospray ionization mass spectrometric experiments. The chiral selectors were designed to remove the ionization site from the sites required for effective chiral recognition. Addition of a chiral analyte to a solution of the two pseudoenantiomeric chiral selectors, which differ in absolute stereochemistry and the length of the tether connecting the tertiary amine site used for ionization via protonation and the rest of the chiral selector, affords selector-analyte complexes in the electrospray ionization mass spectrum where the ratio of these complexes is dependent on the enantiomeric composition of the analyte. The relationship between the ratio of the selector-analyte complexes in the electrospray ionization mass spectrum and the enantiomeric composition of the analyte can be used to relate the extent of enantioselectivity that is being observed and for quantitative enantiomeric composition determinations. Investigations into the scope and limitations of this method, plus a comparison to the enantioselectivities observed by chiral HPLC using a N-(3,5-dinitrobenzoyl)leucine-derived chiral stationary phase, is presented.  相似文献   

7.
The use of a guanosine gel as a chiral selector in capillary electrophoresis is introduced. Guanosine gels are reversible organized media that are formed through the self-association of guanosine compounds. Their degree of organization and their physicochemical properties can be modulated through variations in guanosine monomer concentration, pH, temperature, and cation content. Baseline resolution of the d and l enantiomers of propranolol was achieved using a reversible biogel formed by 5'-guanosine monophosphate as the run buffer in capillary electrophoresis. Conditions were optimized to provide enantiomeric resolution of 2.1-2.3 in less than 5 min. The reversibility of the gel network offers potential advantages for chiral separations, including the possibility of using thermal or chemical dissociation of the gel network to remove the nucleoside monomers from the separated enantiomers, thereby eliminating the chiral selector as a source of physical contamination of the enantiomerically pure products and spectral background in UV absorbance detection.  相似文献   

8.
A method to selectively probe the different adsorption of enantiomers at chiral solid-liquid interfaces is applied, which combines attenuated total reflection infrared spectroscopy and modulation spectroscopy. The spectral changes on the surface are followed while the absolute configuration of the adsorbate is changed periodically. Demodulated spectra are calculated by performing a subsequent digital phase-sensitive data analysis. The method is sensitive solely to the difference of the interaction of the two enantiomers with the chiral surface, and the small spectral changes are amplified by the phase-sensitive data analysis. Its potential is demonstrated by investigating an already well-studied system in liquid chromatography, namely, the enantiomer separation of N-3,5-dinitrobenzoyl-(R,S)-leucine (DNB-(R,S)-Leu) using tert-butylcarbamoyl quinine (tBuCQN) as the chiral selector immobilized on the surface of porous silica particles. The performed experiments and density functional theory calculations confirm an interaction model that was proposed earlier based on solution NMR and XRD in the solid state. It emerges that the ionic interaction is the strongest one, but the main reason for the potential for enantioseparation of the chiral stationary phase (CSP) is the distinct formation of a hydrogen bond of the (S)-enantiomer with the chiral selector. This H-bond is established between the amide N-H of DNB-(S)-Leu with the carbamate C=O of the CSP. The (R)-enantiomer instead shows no specific hydrogen bonds. Only the unspecific ionic bonding between the protonated quinine part of the tBuCQN and the carboxylate of the DNB-(R)-Leu (holds also for DNB-(S)-Leu) is observed.  相似文献   

9.
A new technique is demonstrated for the simultaneous concentration and high-resolution separation of chiral compounds. With temperature gradient focusing, a combination of a temperature gradient, an applied electric field, and a buffer with a temperature-dependent ionic strength is used to cause analytes to move to equilibrium, zero-velocity points along a microchannel or capillary. Different analytes are thus separated spatially and concentrated in a manner that resembles isoelectric focusing but that is applicable to a greater variety of analytes including small chiral drug molecules. Chiral separations are accomplished by the addition of a chiral selector, which causes the different enantiomers of an analyte to focus at different positions along a microchannel or capillary. This new technique is demonstrated to provide high performance in a number of areas desirable for chiral separations including rapid separation optimization and method development, facile reversal of peak order (desirable for analysis of trace enantiomeric impurities), and high resolving power (comparable to capillary electrophoresis) in combination with greater than 1000-fold concentration enhancement enabling improved detection limits. In addition, chiral temperature gradient focusing allows for real-time monitoring of the interaction of chiral analyte molecules with chiral selectors that could potentially be applied to the study of other molecular interactions. Finally, unlike CE, which requires long channels or capillaries for high-resolution separations, separations of equivalent resolution can be performed with TGF in very short microchannels (mm); thus, TGF is inherently much more suited to miniaturization and integration into lab-on-a-chip-devices.  相似文献   

10.
Bluhm LH  Wang Y  Li T 《Analytical chemistry》2000,72(21):5201-5205
An alternative process for the analysis of mixture library components for their potential as selectors for chiral chromatography is described. The procedure involves the immobilization of each enantiomer of the target racemic analyte to silica gel, followed by incubation of each resulting stationary phase with a mixture library. The adsorbed library components on the two stationary phases are then analyzed by reversed-phase liquid chromatography. A comparison of the resulting two chromatograms is made. Any peak of identical retention time but with a significant difference in intensity in the two chromatograms indicates that this component is most likely a chiral selector. Its chemical structure is then determined by LC-MS or LC-MS-MS. This new screening method significantly increases the efficiency of chiral selector determination by eliminating the need for multilibrary syntheses, as opposed to our previous method. This technique should also allow for the screening of much larger libraries as compared to our previous work.  相似文献   

11.
The spectroscopic properties of a chiral boronic acid based resorcinarene macrocycle employed for chiral analysis were investigated. Specifically, the emission and excitation characteristics of tetraarylboronate resorcinarene macrocycle (TBRM) and its quantum yield were evaluated. The chiral selector TBRM was investigated as a chiral reagent for the enantiomeric discrimination of amino acids using steady-state fluorescence spectroscopy. Chiral recognition of amino acids in the presence of the macrocycle was based on diastereomeric complexes. Results demonstrated that TBRM had better chiral discrimination ability for lysine as compared to the other amino acids. Partial least squares regression modeling (PLS-1) of spectral data for macrocycle-lysine guest-host complexes was used to correlate the changes in the fluorescence emission for a set of calibration samples consisting of TBRM in the presence of varying enantiomeric compositions of lysine. In addition, validation studies were performed using an independently prepared set of samples with different enantiomeric compositions of lysine. The results of multivariate regression modeling indicated good prediction ability of lysine, which was confirmed by a root mean square percent relative error (RMS%RE) of 5.8%.  相似文献   

12.
The theory and use of the "three-phase" model in enantioselective gas-liquid chromatography utilizing a methylated cyclodextrin/polysiloxane stationary phase is presented for the first time. Equations are derived that account for all three partition equilibria in the system, including partitioning between the gas mobile phase and both stationary-phase components and the analyte equilibrium between the polysiloxane and cyclodextrin pseudophase. The separation of the retention contributions from the achiral and chiral parts of the stationary phase can be easily accomplished. Also, it allows the direct examination of the two contributions to enantioselctivity, i.e., that which occurs completely in the liquid stationary phase versus the direct transfer of the chiral analyte in the gas phase to the dissolved chiral selector. Six compounds were studied to verify the model: 1-phenylethanol, alpha-ionone, 3-methyl-1-indanone, o-(chloromethyl)phenyl sulfoxide, o-(bromomethyl)phenyl sulfoxide, and ethyl p-tolylsulfonate. Generally, the cyclodextrin component of the stationary phase contributes to retention more than the bulk liquid polysiloxane. This may be an important requirement for effective GC chiral stationary phases. In addition, the roles of enthalpy and entropy toward enantiorecognition by this stationary phase were examined. While enantiomeric differences in both enthalpy and entropy provide chiral discrimination, the contribution of entropy appears to be more significant in this regard. The three-phase model may be applied to any gas-liquid chromatography stationary phase involving a pseudophase.  相似文献   

13.
Development of chiral selectors (SOs) is important both for understanding chiral molecular recognition processes and for their use in the separation of chiral species (selectands). Their evaluation by chromatographic procedures (e.g., as chiral stationary phase) can, however, be time-consuming. In this respect, electrospray ionization-MS (ESI-MS) is tested here as a possible alternative for screening enantioselective binding by SOs. The set of well-characterized cinchona alkaloid SOs are investigated with respect to their enantioselective binding to a set of model enantiomers, dinitrobenzoyl-(R)- and dinitrobenzoyl-(S)-leucine. MS-based enantioselectivity values from normalized gas-phase ion abundances for the diastereomeric complexes are compared empirically to chromatographic (HPLC) enantioselectivity results and shown to be consistent. Investigations into the fundamentals of measuring unbiased enantioselectivity values in the limit of dilute solution by correlation between experimental and modeled theoretical data are shown. Titration experiments are used to extract binding constants and are compared with published calorimetric (ITC) data. Results show that while the magnitude of binding affinities determined for various diastereomeric complexes is attenuated, the relative ranking and stereochemical preference in binding are consistently reproduced. This work represents a fundamental study of solution- versus gas-phase correlation for enantioselective systems by ESI-MS and indicates that, although not all questions and assumptions can be clearly engaged, for these enthalpically driven binding systems, the relative degree of binding affinity and selectivity is preserved.  相似文献   

14.
Continuous- or free-flow electrophoresis is based upon a thin film of fluid flowing between two parallel plates. The electrolytes and the sample are continuously admitted at one end of the electrophoresis chamber and are fractionated by an array of outlet tubes at the other. Using the Octopus apparatus in a horizontal position, continuous preparative separation of methadone enantiomers in the presence of (2-hydroxypropyl)-β-cyclodextrin as a chiral selector was investigated under conditions of continuous-flow zone electrophoresis and continuous-flow isotachophoresis. The enantiomeric composition of methadone in the collected fractions was assessed by chiral capillary electrophoresis and circular-dichroism spectroscopy. In both electrophoretic modes, partial separation of the two enantiomers with an enrichment of about 80% and a throughput of 10-20 mg of racemic methadone per hour was obtained. Operating the Octopus apparatus with interrupted buffer flow during electrophoresis, a process termed interval-flow electrophoresis, resulted in complete separation of milligram quantities of the two methadone enantiomers. Furthermore, commencing with racemic methadone, continuous multistage isotachophoretic processing is shown to be suitable to purify (R)-(-)-methadone, the enantiomer with higher pharmacological activity, on a mg/h scale and at a mM concentration in the collected product stream.  相似文献   

15.
This paper describes the application of stereoselective antibodies as tailor-made chiral selectors for the separation of enantiomers in HPLC under isocratic conditions. Stereoselective monoclonal antibodies to D- and L-alpha-amino acids, raised against protein conjugates of p-amino-D- and L-phenylalanine, were immobilized on a synthetic high-flow-through support material and used for rapid enantiomer separation of a number of amino acids at flow rates between 0.1 and 10 mL/min. Since separations could be performed in a mild buffer, column lifetime considerably exceeded that of classical immunoaffinity systems. Using an anti-D-amino acid antibody as chiral selector, the L-enantiomers eluted with the void volume, while the D-enantiomers eluted second. Inverted elution orders were obtained on chiral stationary phases prepared from an anti-L-amino acid antibody. These results demonstrate, for the first time, that antibody-based chiral stationary phases are useful for routine enantiomer separation under true high-performance chromatographic conditions.  相似文献   

16.
Liu Q  Zhang S  Wu B  Guo J  Xie J  Gu M  Zhao Y  Yun L  Liu K 《Analytical chemistry》2005,77(16):5302-5310
A novel class of chiral melamine derivatives has been designed and synthesized. The ability of these compounds to perform chiral recognition toward 19 natural chiral alpha-amino acids has been investigated by electrospray ionization tandem mass spectrometry for the first time. The enantioselectivities of these new chiral selectors are encouraging. To elucidate some mechanism and regularity in the chiral recognition process using chiral melamine derivatives as chiral selectors, the effect of different noncovalent interactions caused by various chiral or achiral moieties in melamine derivatives on the chiral recognition in the gas phase has been studied at the same time. The result shows that electrostatic, hydrogen bond, pi-pi stacking, and steric interaction between selector and analyte play important roles in the association and enantioselective recognition of amino acids with the chiral melamine derivatives as chiral selectors. Enantiodiscrimination for analytes with different structures and properties could be improved by modifying substituents in melamine derivatives on purpose.  相似文献   

17.
The effect of chromatographic conditions on the performance of chiral monolithic poly(O-[2-(methacryloyloxy)-ethylcarbamoyl]-10,11-dihydroqui nidine-co-ethylene dimethacrylate-co-2-hydroxyethyl methacrylate) columns in the capillary electrochromatography of enantiomers has been studied. The flow velocity was found to be proportional to the pore size of the monolith and both the pH and the composition of the mobile phase. The length of both open and monolithic segments of the capillary column was found to exert a substantial effect on the run times. The use of monoliths as short as 8.5 cm and the "short-end" injection technique enabled the separations to be achieved in approximately 5 min despite the high retentitivity of the quinidine selector. Very high column efficiencies of close to 250000 plates/m and good selectivities were achieved for the separations of numerous enantiomers using the chiral monolithic capillaries with the optimized chromatographic conditions.  相似文献   

18.
The bonding of serine, phenylalanine, and mandelic acid enantiomers on an N-3,5-dinitrobenzoyl-l-leucine chiral stationary phase (on zeolite A support) has been investigated by FT-Raman spectrometry. It was found that retention is due to hydrogen bonds and π-stacking interactions between the stationary phase and the analyte. The involvement of the two different amide groups (as donor and/or acceptor) in the complexation reaction can be followed based on spectral data. A correlation was found between the ratio of the amide I and the ring stretching (1532 cm(-)(1)) bands and retention data.  相似文献   

19.
The second order standard addition method and spectrofluorimetry were used for determination of ibuprofen enantiomers in human plasma and urine. The methodology was based on chiral recognition of ibuprofen by formation of an inclusion complex with a chiral auxiliary, β-cyclodextrin, in the presence of 1-butanol. The strategy combines the use of PARAFAC, for extraction of the pure analyte signal, with the standard addition method, for determinations in presence of a matrix effect. A specific PARAFAC model was built for each sample and the scores were related to (S)-ibuprofen concentration using a linear regression in the standard addition method. Feasible results were obtained for determinations in the molar fraction range from 50 to 80% of (S)-ibuprofen, providing absolute errors lowers than 4.0% for plasma and urine.  相似文献   

20.
A new procedure for ergot alkaloid-based chiral stationary phase preparation is described. Synthesis is based on bonding the allyl derivative of terguride to mercaptopropylsilanized silica gel. The packing exhibits higher content of chiral selector, stability, reproducibility, and enantioselectivity toward amino acids compared to that previously studied. The chromatographic behavior of amino acids with different side chains and substituent groups is investigated in order to obtain a deeper insight into the enantiodiscriminative mechanism as well as to determine the limitations and strengths of terguride as a chiral selector for this class of compounds. A variety of factors, including mobile phase parameters such as pH, ionic strength, content and nature of organic modifier, and temperature, are examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号