首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on a very compact desk‐top transmission extreme ultraviolet (EUV) microscope based on a laser‐plasma source with a double stream gas‐puff target, capable of acquiring magnified images of objects with a spatial (half‐pitch) resolution of sub‐50 nm. A multilayer ellipsoidal condenser is used to focus and spectrally narrow the radiation from the plasma, producing a quasi‐monochromatic EUV radiation (λ = 13.8 nm) illuminating the object, whereas a Fresnel zone plate objective forms the image. Design details, development, characterization and optimization of the EUV source and the microscope are described and discussed. Test object and other samples were imaged to demonstrate superior resolution compared to visible light microscopy.  相似文献   

2.
A compact Schwarzschild soft X-ray microscope using a laser-produced plasma soft X-ray source has been developed. The laser-produced plasma source, which is small but of high brilliance, has made it possible to use the soft X-ray microscope in a small laboratory. The microscope is composed of a Schwarzschild objective and a grazing incidence mirror condenser. Image contrast for biological specimens in soft X-ray regions is investigated briefly. It is possible to observe the fine structures of a thin specimen at a wavelength of 15 nm; at this wavelength high-contrast images of biological specimens have been obtained with a single laser shot of pulse width of 8 ns at a resolution of 0·3 μm. The resolution of the system is limited by the detector.  相似文献   

3.
A lithium fluoride (LiF) crystal has been utilized as a new soft X-ray detector to image different biological samples at a high spatial resolution. This new type of image detector for X-ray microscopy has many interesting properties: high resolution (nanometer scale), permanent storage of images, the ability to clear the image and reuse the LiF crystal, and high contrast with greater dynamic range. Cells of the unicellular green algae Chlamydomonas dysosmos and Chlorella sorokiniana, and pollen grains of Olea europea have been used as biological materials for imaging. The biological samples were imaged on LiF crystals by using the soft X-ray contact microscopy and contact micro-radiography techniques. The laser plasma soft X-ray source was generated using a Nd:YAG/Glass laser focused on a solid target. The X-ray energy range for image acquisition was in the water-window spectral range for single shot contact microscopy of very thin biological samples (single cells) and around 1 keV for multishots microradiography. The main aim of this article is to highlight the possibility of using a LiF crystal as a detector for the biological imaging using soft X-ray radiation and to demonstrate its ability to visualize the microstructure within living cells.  相似文献   

4.
In this paper, the use of lithium fluoride (LiF) as imaging radiation detector to analyse living cells by single‐shot soft X‐ray contact microscopy is presented. High resolved X‐ray images on LiF of cyanobacterium Leptolyngbya VRUC135, two unicellular microalgae of the genus Chlamydomonas and mouse macrophage cells (line RAW 264.7) have been obtained utilizing X‐ray radiation in the water window energy range from a laser plasma source. The used method is based on loading of the samples, the cell suspension, in a special holder where they are in close contact with a LiF crystal solid‐state X‐ray imaging detector. After exposure and sample removal, the images stored in LiF by the soft X‐ray contact microscopy technique are read by an optical microscope in fluorescence mode. The clear image of the mucilaginous sheath the structure of the filamentous Leptolyngbya and the visible nucleolus in the macrophage cells image, are noteworthiness results. The peculiarities of the used X‐ray radiation and of the LiF imaging detector allow obtaining images in absorption contrast revealing the internal structures of the investigated samples at high spatial resolution. Moreover, the wide dynamic range of the LiF imaging detector contributes to obtain high‐quality images. In particular, we demonstrate that this peculiar characteristic of LiF detector allows enhancing the contrast and reveal details even when they were obscured by a nonuniform stray light.  相似文献   

5.
Development of an Experimental EUVL System   总被引:5,自引:3,他引:2  
The authors have developed an experimental system for the studies of extreme ultraviolet projection lithography at 13.0nm wavelength, which includes a laser plasma source,an ellipsoidal condenser, a transmission mask and a Schwarzschild optics. The optical system is optimized to achieve 0.1μm resolution over a 0.1mm diameter image field of view and the mirrors of the objective were coated with Mo/Si multilayer to provide 60% reflectance atnear-normal incidence angle for 13.0nm radiation.  相似文献   

6.
A new interferometer for extreme ultraviolet (EUV) radiation with a laser produced plasma (LPP) laboratory source is under construction. The LPP source is operated with a Sn solid rod target on which pulsed YAG laser is focused to produce high temperature plasma emitting EUV radiation. The source is equipped with a newly designed debris stopper protecting a condenser multilayer mirror from the particle debris of the target. The condenser mirror focuses the light onto an EUV beam - splitter to form transmitted and reflected paths for producing interference fringes of a sharing type. The optical configuration is of a common path based on a triangular path type with a focusing at the beam- splitter, which is enabled to produce fringes by a low coherence radiation with a standard optical quality beam - splitter. The fringes are recorded by an imaging plate with pixels as small as 25μm. The dynamic range of linearity in detection of the EUV light was found to be more than 10^4 with sensitivity of 10^4 photo ns/pixel, enough for the purpose of interferogram recording possibly with one laser shot.  相似文献   

7.
长春光机所软X射线-极紫外波段光学研究   总被引:2,自引:2,他引:0  
陈波  尼启良  王君林 《光学精密工程》2007,15(12):1862-1868
综述了我所软X射线-极紫外波段关键技术的研究进展。描述了软X射线-极紫外波段光源技术,研制了工作波段为6~22 nm的微流靶激光等离子体光源;介绍了光子计数成像探测器技术,研制出了有效直径为25 mm,等效像元分辨率为0.3 mm的极紫外波段探测器;开展了超光滑表面加工、检测技术的研究,研制了超光滑表面抛光机,加工出高面形精度的超光滑表面,面形精度为6 nm(RMS值),表面粗糙度达0.6 nm(RMS值);进行了软X射线-极紫外波段多层膜技术的研究,研制出13 nm处反射率为60%的多层膜反射镜,150 mm口径反射镜的反射率均匀性优于±2.5%;最后,讨论了软X射线-极紫外波段测量技术研究,研制出该波段反射率计,其测量范围为5~50 nm,光谱分辨率好于0.2 nm,测量重复性好于±1%。在上述关键技术研究基础上,研制出了极紫外波段成像仪和空间极紫外波段太阳望远镜,这些仪器在我国空间科学研究项目中发挥了作用。  相似文献   

8.
软X射线投影光刻原理装置的设计   总被引:8,自引:6,他引:2  
首先介绍了投影光刻技术发展的历程、趋势和软X射线投影光刻技术的特性,其次介绍了软X射线投影光刻原理装置的研制工作.该装置由激光等离子体光源、掠入射椭球聚光镜、透射掩模、镀有多层膜的Schwarzchild微缩投影物镜、涂有光刻胶的硅片及相应的真空系统组成.0.1倍的Schwarzchild微缩投影物镜具有小于0.2μm的分辨率.  相似文献   

9.
17.1 nm波段光电成像系统分辨率的实验研究   总被引:3,自引:2,他引:1  
设计了17.1 nm波段光电成像系统,用于对波长为17.1 nm的极紫外光进行成像。该成像系统分为三大部分:光源、单色仪和探测系统。一个调Q的Nd∶YAG激光器(Continuum 9000)用来产生激光等离子体,掠入射单色仪由2块球面聚焦镜和1块600 L/mm的球面掠入射光栅组成,经单色仪分光后得到波长为17.1 nm的单色光,探测器是微通道板(MCP)和荧光屏组件共同组成,Kodak400型胶卷被用于记录狭缝的像。结果获得了一宽度为3 mm的狭缝的像,实验测得130 μm的成像系统的空间分辨率,好于相同条件下文献[6]的结果。  相似文献   

10.
We demonstrate compact full‐field soft X‐ray transmission microscopy with sub 60‐nm resolution operating at λ= 2.48 nm. The microscope is based on a 100‐Hz regenerative liquid‐nitrogen‐jet laser‐plasma source in combination with a condenser zone plate and a micro‐zone plate objective for high‐resolution imaging onto a 2048 × 2048 pixel CCD detector. The sample holder is mounted in a helium atmosphere and allows imaging of both dry and wet specimens. The microscope design enables fast sample switching and the sample can be pre‐aligned using a visible‐light microscope. High‐quality images can be acquired with exposure times of less than 5 min. We demonstrate the performance of the microscope using both dry and wet samples.  相似文献   

11.
This recently developed diagnostic was designed to allow for time-gated spectroscopic study of the EUV radiation (4 nm < λ < 15 nm) present during harsh wire array z-pinch implosions. The spectrometer utilizes a 25 μm slit, an array of 3 spherical blazed gratings at grazing incidence, and a microchannel plate (MCP) detector placed in an off-Rowland position. Each grating is positioned such that its diffracted radiation is cast over two of the six total independently timed frames of the MCP. The off-Rowland configuration allows for a much greater spectral density on the imaging plate but only focuses at one wavelength per grating. The focal wavelengths are chosen for their diagnostic significance. Testing was conducted at the Zebra pulsed-power generator (1 MA, 100 ns risetime) at the University of Nevada, Reno on a series of wire array z-pinch loads. Within this harsh z-pinch environment, radiation yields routinely exceed 20 kJ in the EUV and soft x-ray. There are also strong mechanical shocks, high velocity debris, sudden vacuum changes during operation, energic ion beams, and hard x-ray radiation in excess of 50 keV. The spectra obtained from the precursor plasma of an Al double planar wire array contained lines of Al IX and AlX ions indicating a temperature near 60 eV during precursor formation. Detailed results will be presented showing the fielding specifications and the techniques used to extract important plasma parameters using this spectrometer.  相似文献   

12.
High contrast imaging of in vivo Chlorella sorokiniana cells with submicron spatial resolution was obtained with a contact water window X-ray microscopy technique using a point-like, laser-plasma produced, water-window X-ray radiation source, and LiF crystals as detectors. This novel type of X-ray imaging detectors is based on photoluminescence of stable electronic point defects, characterized by high intrinsic resolution. The fluorescence images obtained on LiF crystals exposed in single-shot experiments demonstrate the high sensitivity and dynamic range of this new detector. The powerful performances of LiF crystals allowed us to detect the exudates of Chlorella cells in their living medium and their spatial distribution in situ, without any special sample preparation.  相似文献   

13.
软X射线多层膜的进展使正入射高分辨率成像系统从红外、可见和紫外扩展到软X射线波段。由于软X射线多层膜的反射率还不能像其它波段反射镜反射率那样高,因此由两块同心球面反射镜组成的Schwarzschild物镜在软X射线波段得到了广泛的应用。本文从多层膜带宽匹配条件、Schwarzschild显微物镜的几何尺寸和多层膜镀制设备的性能出发,研究了实现Schwarzschild显微物镜带宽匹配条件的镀膜过程,为实际制备Schwarzschild显微物镜用多层膜提供理论指导。  相似文献   

14.
氟化锂椭圆弯晶分析器的特性及应用   总被引:4,自引:3,他引:4  
设计了测试能量范围为0.6~6 keV的椭圆弯晶谱仪。此谱仪利用椭圆自聚焦原理,晶体分析器采用氟化锂材料,椭圆焦距为1 350 mm,离心率为0.958 6,布拉格角范围为30~65°。在神光Ⅱ靶室进行了实验,入射激光波长为0.35 μm,激光功率约为1.6×1014 W/cm2,与厚度为100 μm的钛平面靶法线夹角约为45°。实验结果证实,弯曲的氟化锂晶体具有极佳探测效果,弯晶分析器对波长为0.2~0.35 nm的X射线的分辨率可达500~1 000,同时具有等光程而便于空间分辨测量的优点,在同样距离条件下比平晶分析器高一个数量级的收光效率,故适合于激光等离子体X射线的光谱学研究。  相似文献   

15.
An energy analyzer has been constructed and operated in UHV for the purpose of analyzing the energy of neutral atoms scattered from solid surfaces. The analyzer consists of a LiF single crystal located at an angle close to the normal to the sample crystal so that the diffraction pattern obtained by scanning the LiF crystal yields the energy of the scattered atoms. Two designs which have been used are described. The temperature of both sample and analyzer crystal is near 20 K and once cleaned they can be maintained in the state of initial preparation for many weeks. The sample was a (001) Cu surface in this case. Such an energy analyzer can only be used, in most cases, for He atom scattering although Ne atoms could be used if the scattered intensities were adequate. The detector developed in this study is able to detect about 2x10(5) atoms/s. The resolution of the spectrometer depends on the incident energy of the atom and is about 1 meV at an incident energy of 23 meV. This resolution can be improved by a factor of 3 to 4 by cooling the nozzle to a temperature lower than 77 K and using variable size slits which can be inserted into the beam path.  相似文献   

16.
To measure the degree of polarization of a plasma emission, a polarization-resolved UV-visible Czerny-Turner-type spectrometer was designed and constructed. For a high spectral resolution, F=1 m mirrors were used as a focusing and collimating mirrors and the incidence angles to the mirrors were determined to eliminate coma. The effect of astigmatism was reduced by designing the incidence angles to the mirrors to be as small as possible. The flat focal plane condition proposed by Reader [J. Opt. Soc. Am. 59, 1189 (1969)] was used to determine the grating position. The measured spatial resolution was 170 microm. To simultaneously measure the intensities with two perpendicular polarizations, a calcite crystal was placed after the entrance slit of the spectrometer. The change in the imaging property of the spectrometer due to the calcite crystal was measured and minimized. The spectral resolution was experimentally measured with a laser produced plasma to be 0.05 nm at 348 nm. The resolving power measured is 6600.  相似文献   

17.
使用感应电荷位敏阳极的极紫外单光子计数成像系统   总被引:8,自引:4,他引:4  
研制了用于月基极紫外成像相机的二维极紫外位敏阳极光子计数成像探测器原型样机,该探测器系统主要由工作在脉冲计数模式下的微通道板堆、楔条形感应位敏阳极及相关的模拟和数据处理电路组成。设计和制备了周期为1.5mm,有效直径为47 mm的三电极楔条形位敏阳极,研制了最高计数率为200 kHz的前端模拟和数字电路。测量了探测器的暗计数率、脉冲高度分布、增益、线性及空间分辨率等工作特性。测量结果表明,探测器的空间分辨率为7.13 lp/mm(即0.14 mm),满足月基极紫外相机对空间分辨率的要求。  相似文献   

18.
Multilayer optics for the EUV and soft X-rays   总被引:3,自引:0,他引:3  
1Introduction Engineersandscientistsinfieldsasdiverse asmicrolithographyandspaceastronomyhavea commonneedtouse“light”rangingfromEUV tothesoftX rayregion.Theextremeultraviolet andsoftX rayspectralregionliebetweentheul travioletandthehardX rayregionsoftheelec tromagneticspectrum.Inspiteofthesmooth transitionsbetweenthespectralsubdivisionsit’s worthtodefineroughlytheirapproximatebor ders[1]:extremeultravioletEUV~50nmto~5nm~25eVto~250eV,softX rayregion~5nmto~0.2nm~250eVto~6keV.The…  相似文献   

19.
实验以水为靶材,Nd:YAG激光器为照射激光构成激光等离子体光源,产生软X射线-极紫外辐射。利用McPHERSON 247型掠入射软X射线-真空紫外单色仪、AXUV100硅光电二极管,测量了11~20 nm波段水靶激光等离子体光源的光谱。实验表明,在11~20 nm波段水靶激光等离子体光源存在多条线谱,均由水中氧离子电子跃迁产生。所用单色仪光谱分辨率Δλ≤0.075 nm,波长扫描间隔0.5 nm。另外,采用在喷嘴处加热的办法,很好地解决了水进入真空系统后绝热膨胀与蒸发过程中温度骤降而结冰的问题,有效地抑制了喷射距离缩短,克服了等离子体对喷嘴腐蚀严重的问题。  相似文献   

20.
空间软X射线/极紫外波段正入射望远镜研究   总被引:8,自引:5,他引:8  
介绍国际上空间软X射线/极紫外波段正入射望远镜研究进展情况。着重介绍了长春光机所设计的四波段同时成像空间极紫外太阳望远镜。该望远镜由四个不同波长的多层膜正入射望远镜组成,工作波长分别为12.9nm、17.1nm、19.5nm和30.4nm,视场角为8.5′×8.5′,设计角分辨率为0.5″。为了验证设计方案可行性及关键技术水平,集成出一套17.1nm极紫外望远镜演示样机。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号