首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We screened a Xenopus laevis oocyte cDNA expression library with a Src homology 3 (SH3) class II peptide ligand and identified a 1270-amino acid-long protein containing two Eps15 homology (EH) domains, a central coiled-coil region, and five SH3 domains. We named this protein Intersectin, because it potentially brings together EH and SH3 domain-binding proteins into a macromolecular complex. The ligand preference of the EH domains were deduced to be asparajine-proline-phenylalanine (NPF) or cyclized NPF (CX1-2NPFXXC), depending on the type of phage-displayed combinatorial peptide library used. Screens of a mouse embryo cDNA library with the EH domains of Intersectin yielded clones for the Rev-associated binding/Rev-interacting protein (RAB/Rip) and two novel proteins, which we named Intersectin-binding proteins (Ibps) 1 and 2. All three proteins contain internal and C-terminal NPF peptide sequences, and Ibp1 and Ibp2 also contain putative clathrin-binding sites. Deletion of the C-terminal sequence, NPFL-COOH, from RAB/Rip eliminated EH domain binding, whereas fusion of the same peptide sequence to glutathione S-transferase generated strong binding to the EH domains of Intersectin. Several experiments support the conclusion that the free carboxylate group contributes to binding of the NPFL motif at the C terminus of RAB/Rip to the EH domains of Intersectin. Finally, affinity selection experiments with the SH3 domains of Intersectin identified two endocytic proteins, dynamin and synaptojanin, as potential interacting proteins. We propose that Intersectin is a component of the endocytic machinery.  相似文献   

2.
Fluoride is known to increase bone mass in vivo, probably through stimulation of osteoblast proliferation; however, the mechanisms of fluoroaluminate action in osteoblasts have not yet been elucidated. We have previously shown that in osteoblastic MC3T3-E1 cells, fluoroaluminate stimulates G protein-mediated protein tyrosine phosphorylation (Scaronuscarona, M., Standke, G. J. R., Jeschke, M., and Rohner, D. (1997) Biochem. Biophys. Res. Commun. 235, 680-684). Although the Ser/Thr kinases Erk1, Erk2, and p70(S6K) were activated in response to fluoroaluminate, the identity of fluoroaluminate-activated tyrosine kinase(s) remained elusive. In this study, we show that in MC3T3-E1 cells, fluoroaluminate induces a 110-kDa tyrosine-phosphorylated protein that we identify as Pyk2, a cytoplasmic tyrosine kinase related to Fak (focal adhesion kinase). The tyrosine phosphorylation of Pyk2 increased in a dose- and time-dependent manner. The autophosphorylation activity of Pyk2 increased 3-fold and reached its maximum within 10 min of fluoroaluminate treatment. Fluoroaluminate also induced activation of Src and the association of Pyk2 with Src. The phosphorylation of Src-associated Pyk2 increased >20-fold in in vitro kinase assays, suggesting that Pyk2 is phosphorylated by Src. Although MC3T3-E1 cells express much more Fak than Pyk2, Src preferentially associated with Pyk2. In vitro, Pyk2 bound to the Src SH2 domain, suggesting that this interaction mediates the Src-Pyk2 association in cells. These data indicate that osteoblastic cells express Pyk2, which is tyrosine-phosphorylated and activated in response to G protein activation by fluoroaluminate, and that the mechanism of Pyk2 activation most likely involves Src. Thus, Src and Pyk2 are tyrosine kinases involved in G protein-mediated tyrosine phosphorylation in osteoblastic cells and may be important for the osteogenic action of fluoroaluminate.  相似文献   

3.
A large fraction of glycosylphosphatidylinositol (GPI)-anchored proteins and Src-like kinases are confined to glycolipid-enriched membrane (GEM) microdomains. The particular membrane topology of GPI-anchored proteins has led to the postulation of the existence of integral membrane proteins linking extracellular stimuli with cytosolic machinery for endocytosis and signaling. The human MAL cDNA was identified during a search for novel genes differentially expressed during T cell development, and encodes a multispanning membrane protein displaying lipid-like properties. To address the biochemical characterization of endogenous MAL and to analyze its possible association with other proteins, we have generated a monoclonal antibody (mAb) specific to the MAL molecule. Using this mAb, we have identified MAL in GEM microdomains of both the HPB-ALL T cell line and human peripheral blood lymphocytes. Co-immunoprecipitation experiments with antibodies to the MAL molecule or to the GPI-anchored CD59 antigen indicated specific association of MAL with GPI-anchored proteins and Src-like tyrosine kinases. In addition, both MAL and the Src-like kinase Lck were identified in GEM obtained from an endosomal-enriched membrane fraction. These features of MAL closely match some of the properties expected for the hypothetical integral membrane linker proteins acting in specialized GEM-mediated functions.  相似文献   

4.
Lipoarabinomannan (LAM) is a putative virulence factor of Mycobacterium tuberculosis that inhibits monocyte functions, and this may involve antagonism of cell signaling pathways. The effects of LAM on protein tyrosine phosphorylation in cells of the human monocytic cell line THP-1 were examined. LAM promoted tyrosine dephosphorylation of multiple cell proteins and attenuated phorbol 12-myristate 13-acetate-induced activation of mitogen-activated protein kinase. To examine whether these effects of LAM could be related to activation of a phosphatase, fractions from LAM-treated cells were analyzed for dephosphorylation of para-nitrophenol phosphate. The data show that LAM induced increased phosphatase activity associated with the membrane fraction. The Src homology 2 containing tyrosine phosphatase 1 (SHP-1) is important for signal termination and was examined as a potential target of LAM. Exposure of cells to LAM brought about (i) an increase in tyrosine phosphorylation of SHP-1, and (ii) translocation of the phosphatase to the membrane. Phosphatase assay of SHP-1 immunoprecipitated from LAM-treated cells, using phosphorylated mitogen-activated protein kinase as substrate, indicated that LAM promoted increased activity of SHP-1 in vivo. LAM also activated SHP-1 directly in vitro. Exposure of cells to LAM also attenuated the expression of tumor necrosis factor-alpha, interleukin-12, and major histocompatibility class II molecules. These results suggest that one mechanism by which LAM deactivates monocytes involves activation of SHP-1.  相似文献   

5.
We have identified the Src family members, Lck and Fgr in resting human and rodent platelets and compared their subcellular distributions and tyrosine phosphorylation status to those of the other Src family kinases to gain insights into the signal transduction pathways active in maintaining platelets in the circulation. Like Fyn, Lyn, and Yes, most of Fgr and Lck was detergent-insoluble in human and rat platelets. In comparison, Src showed higher detergent solubility than the Src-related kinases. Most all human platelet Src was detergent-soluble, while that of rodent platelets was present in all detergent fractions. We also compared the tyrosine-phosphorylation status of Lck and Fgr to other Src family members in resting platelets using immunoprecipitation and immunoblotting. All of these Src family members except Fgr exhibited substantial phosphotyrosine antibody labeling. The partitioning of these kinases, with the exception of Src, with the detergent-insoluble fraction, their tyrosine-phosphorylation status, and co-localization with endocytotic vesicles lead us to hypothesize that the Src family kinases are involved in signaling events that drive cytoskeletal reorganization and active endocytosis of plasma proteins by circulating platelets.  相似文献   

6.
CD28 provides a costimulatory signal that results in optimal activation of T cells. The signal transduction pathways necessary for CD28-mediated costimulation are presently unknown. Engagement of CD28 leads to its tyrosine phosphorylation and subsequent binding to Src homology 2 (SH2)-containing proteins including the p85 subunit of phosphatidylinositol 3'-kinase (PI3K); however, the contribution of PI3K to CD28-dependent costimulation remains controversial. Here we show that CD28 is capable of binding the Src homology 3 (SH3) domains of several proteins, including Grb2. The interaction between Grb2 and CD28 is mediated by the binding of Grb2-SH3 domains to the C-terminal diproline motif present in the cytoplasmic domain of CD28. While the affinity of the C-terminal SH3 domain of Grb2 for CD28 is greater than that of the N-terminal SH3 domain, optimal binding requires both SH3 domains. Ligation of CD28, but not tyrosine-phosphorylation, is required for the SH3-mediated binding of Grb2 to CD28. We propose a model whereby the association of Grb2 with CD28 occurs via an inducible SH3-mediated interaction and leads to the recruitment of tyrosine-phosphorylated proteins such as p52(shc) bound to the SH2 domain of Grb2. The inducible interaction of Grb2 to the C-terminal region of CD28 may form the basis for PI3K-independent signaling through CD28.  相似文献   

7.
Interleukin-5 (IL-5) regulates the growth and function of eosinophils. It induces rapid tyrosine phosphorylation of Lyn and Jak2 tyrosine kinases. The role of tyrosine phosphatases in IL-5 signal transduction has not been investigated. In this study, we provide first evidence that SH2 protein tyrosine phosphatase 2 (SHPTP2) phosphotyrosine phosphatase plays a key role in prevention of eosinophil death by IL-5. We found that IL-5 produced a rapid activation and tyrosine phosphorylation of SHPTP2 within 1 min. The tyrosine phosphorylated SHPTP2 was complexed with the adapter protein Grb2 in IL-5-stimulated eosinophils. Furthermore, SHPTP2 appeared to physically associate with beta common (betac) chain of the IL-5 receptor (IL-5betacR). The association of SHPTP2 with IL-5betacR was reconstituted using a synthetic phosphotyrosine-containing peptide, betac 605-624, encompassing tyrosine (Y)612. The binding to the phosphotyrosine-containing peptide increased the phosphatase activity of SHPTP2, whereas the same peptide with the phosphorylated Y612--> F mutation did not activate SHPTP2. Only SHPTP2 antisense oligonucleotides, but not sense SHPTP2, could inhibit tyrosine phosphorylation of microtubule-associated protein kinase, and reverse the eosinophil survival advantage provided by IL-5. Therefore, we conclude that the physical association of SHPTP2 with the phosphorylated betac receptor and Grb2 and its early activation are required for the coupling of the receptor to the Ras signaling pathway and for prevention of eosinophil death by IL-5.  相似文献   

8.
Cortactin is an actin-binding protein that contains several potential signaling motifs including a Src homology 3 (SH3) domain at the distal C terminus. Translocation of cortactin to specific cortical actin structures and hyperphosphorylation of cortactin on tyrosine have been associated with the cortical cytoskeleton reorganization induced by a variety of cellular stimuli. The function of cortactin in these processes is largely unknown in part due to the lack of information about cellular binding partners for cortactin. Here we report the identification of a novel cortactin-binding protein of approximately 180 kDa by yeast two-hybrid interaction screening. The interaction of cortactin with this 180-kDa protein was confirmed by both in vitro and in vivo methods, and the SH3 domain of cortactin was found to direct this interaction. Since this protein represents the first reported natural ligand for the cortactin SH3 domain, we designated it CortBP1 for cortactin-binding protein 1. CortBP1 contains two recognizable sequence motifs within its C-terminal region, including a consensus sequence for cortactin SH3 domain-binding peptides and a sterile alpha motif. Northern and Western blot analysis indicated that CortBP1 is expressed predominately in brain tissue. Immunofluorescence studies revealed colocalization of CortBP1 with cortactin and cortical actin filaments in lamellipodia and membrane ruffles in fibroblasts expressing CortBP1. Colocalization of endogenous CortBP1 and cortactin was also observed in growth cones of developing hippocampal neurons, implicating CortBP1 and cortactin in cytoskeleton reorganization during neurite outgrowth.  相似文献   

9.
Mechanisms that regulate the movement of a membrane spanning protein band 3 in erythrocyte ghosts were investigated at the level of a single or small groups of molecules using single particle tracking with an enhanced time resolution (0.22 ms). Two-thirds of band 3 undergo macroscopic diffusion: a band 3 molecule is temporarily corralled in a mesh of 110 nm in diameter, and hops to an adjacent mesh an average of every 350 ms. The rest (one-third) of band 3 exhibited oscillatory motion similar to that of spectrin, suggesting that these band 3 molecules are bound to spectrin. When the membrane skeletal network was dragged and deformed/translated using optical tweezers, band 3 molecules that were undergoing hop diffusion were displaced toward the same direction as the skeleton. Mild trypsin treatment of ghosts, which cleaves off the cytoplasmic portion of band 3 without affecting spectrin, actin, and protein 4.1, increased the intercompartmental hop rate of band 3 by a factor of 6, whereas it did not change the corral size and the microscopic diffusion rate within a corral. These results indicate that the cytoplasmic portion of band 3 collides with the membrane skeleton, which causes temporal confinement of band 3 inside a mesh of the membrane skeleton.  相似文献   

10.
11.
A thermolabile UPTG inhibitor protein (IP) was isolated and purified from a developing maize endosperm preparation. High homology of two internal peptides of IP with known plant sucrose synthase (SS) sequences suggested that IP might be related somehow with SS. IP and SS activities were found in the same preparation and showed thermolability between 60-65 degrees C. IP and SS activities presented the same ionic charge and molecular mass in native conditions (Mono Q and Superose-12 columns chromatographies). Western blot experiments with an anti-SS antibody as well as with an anti-IP antibody showed a single 80 kDa polypeptide band where IP and SS activities were present. Anti-SS antibody can neutralize SS as well as IP activities in a neutralization assay. It was found that in the maize mutant shrunken-1, lacking SS1 protein, the UPTG activity was not inhibited. Furthermore, the solubilized preparation of the sh1 endosperm is unable of inhibiting UPTG activity from potato tuber. The high correlation between IP and SS properties suggests that IP might be in fact a form of SS. Moreover, the relation between IP and the SS1 isoform is discussed. So, a new biological activity of SS is suggested.  相似文献   

12.
Src kinases and protein kinase C (PKC) have been well studied for their role in oncogenic and normal cellular processes. Herein we report on a novel regulatory pathway mediated by the interaction of PKC-delta with p53/56Lsy (Lyn) and with p60Src (Src) that results in the phosphorylation and increased activity of Lyn and Src. In the RBL-2H3 mast cell line, the interaction of PKC-delta with Lyn required the activation of the high affinity receptor for IgE (FcsigmaRI) while the interaction with Src was constitutive. Increased complex formation of PKC-delta with Lyn or Src led to increased serine phosphorylation and activity of the Src family kinases. Conversely, Lyn was found to phosphorylate Lyn-associated and recombinant PKC-delta in vitro and the tyrosine 52 phosphorylated PKC-delta was recruited to associate with the Lyn SH2 domain. The constitutive association of PKC-delta with Src did not result in the tyrosine phosphorylation of PKC-delta prior to or after FsigmaRI engagement. However in cells over-expressing PKC-delta, FsigmaRI engagement resulted in the dramatic inhibition of Src activity and some inhibition of Lyn activity. Thus, the interaction and cross-talk of PKC-delta with Src family kinases suggests a novel and inter-dependent mechanism for regulation of enzymatic activity that may serve an important role in cellular responses.  相似文献   

13.
The nimA gene encodes a protein-serine/threonine kinase that is required along with the p34cdc2 kinase for mitosis in Aspergillus nidulans. We have searched for human protein kinases that are related to the NIMA protein kinase using the polymerase chain reaction. Different pairs of degenerate oligonucleotides specific for conserved amino acid motifs in the catalytic domain of NIMA were used as primers in the polymerase chain reaction to amplify partial complementary DNAs (cDNAs) of protein kinases expressed in the promyelocytic leukemia cell line HL-60. Forty-one distinct cDNAs representing a broad spectrum of serine/threonine- and tyrosine-specific protein kinases were identified, and the sequences for 21 of these protein kinases were found to be unique. Three of these cDNAs represent a family of protein kinases whose members are related to NIMA and the murine nimA-related protein kinase Nek1. We discuss the success of this polymerase chain reaction approach with respect to the use of multiple primer pairs, the influence of primer degeneracy, and the tolerance of cDNA amplification to mismatches between primers and template mRNA.  相似文献   

14.
We have recently determined that -Ile-Tyr- were the two critical residues as a peptide substrate for p60c-src protein tyrosine kinase (Lou, Q. et al., Lett. Peptide Sci., 1995, 2, 289). Here, we report on the design and synthesis of a secondary 'one-bead, one-compound' combinatorial peptide library based on this dipeptide motif (XIYXXXX, where X = all 19 eukaryotic amino acids except for cysteine). This secondary library was screened for its ability to be phosphorylated by p60c-src PTK using [gamma 32P]ATP as a tracer. Five of the strongest [32P]-labeled peptide-beads were identified and microsequenced: GIYWHHY, KIYDDYE, EIYEENG, EIYEEYE, and YIYEEED. A solid-phase phosphorylation assay was used to evaluate the structure-activity relationship of GIYWHHY. It was determined that Ile2, Tyr3, His5, and His6 were crucial for its activity as a substrate.  相似文献   

15.
Although the exact physiological function of uteroglobin is not known, it has been suggested that it may function by inhibiting phospholipase A2. We have found that the uteroglobin fold is embedded in that of the poreforming domain of colicin A. Colicin A is an antibiotic protein that kills sensitive Escherichia coli cells by forming a pore in their phospholipid membrane. The RMS deviation between the C alpha atoms after the structural alignment is 2.39 A for the 52 superimposed residues. In the alignment, uteroglobin helices 1, 2, 3, and 4 align with colicin A helices 6, 7, 3, and 4, respectively. The motif is strongly amphipathic in both proteins. On the basis of this common structural motif and of known experimental data on both proteins, we propose that UG binds to the membrane surface by lying on it monotopically. The phospholipase A2 inhibition would follow this initial binding step.  相似文献   

16.
The cytoskeleton and/or membrane skeleton has been implicated in the regulation of N-formyl peptide receptors. The coupling of these chemotactic receptors to the membrane skeleton was investigated in plasma membranes from unstimulated and desensitized human neutrophils using the photoreactive agonist N-formyl-met-leu-phe-lys-N epsilon-[125I]2(p-azidosalicylamido)ethyl-1,3'- dithiopropionate (fMLFK-[125I]ASD). When membranes of unstimulated cells were solubilized in Triton-X 100, a detergent that does not disrupt actin filaments, only 50% of the photoaffinity-labeled receptors were solubilized sedimenting in sucrose density gradients at a rate consistent with previous reports. The remainder were found in the pellet fraction along with the membrane skeletal actin. Solubilization of the membranes in the presence of p-chloromercuriphenylsulfonic acid, elevated concentrations of KCl, or deoxyribonuclease I released receptors in parallel with actin. When membranes from neutrophils, desensitized by incubation with fMLFK-[125I]ASD at 15 degrees C, were solubilized, nearly all receptors were recovered in the pellet fraction. Incubation of cells with the ligand at 4 degrees C inhibited desensitization partially and prevented the conversion of a significant fraction of receptors to the form associated with the membrane skeletal pellet. In these separations the photoaffinity-labeled receptors not sedimenting to the pellet cosedimented with actin. Approximately 25% of these receptors could be immunosedimented with antiactin antibodies suggesting that N-formyl peptide receptors may interact directly with actin. These results are consistent with a regulatory role for the interaction of chemotactic N-formyl peptide receptors with actin of the membrane skeleton.  相似文献   

17.
c-Cbl-associated protein, CAP, was originally cloned from a 3T3-L1 adipocyte cDNA expression library using full-length c-Cbl as a bait. CAP contains a unique structure, with three adjacent Src homology-3 (SH3) domains in the COOH terminus and a region sharing significant sequence similarity with the peptide hormone sorbin. Expression of CAP in NIH-3T3 cells overexpressing the insulin receptor induced the formation of stress fibers and focal adhesions. This effect of CAP expression on the organization of the actin-based cytoskeleton was independent of the type of integrin receptors engaged with extracellular matrix, whereas membrane ruffling and decreased actin stress fibers induced by insulin were not affected by expression of CAP. Immunofluorescence microscopy demonstrated that CAP colocalized with actin stress fibers. Moreover, CAP interacted with the focal adhesion kinase, p125FAK, both in vitro and in vivo through one of the SH3 domains of CAP. The increased formation of stress fibers and focal adhesions in CAP-expressing cells was correlated with decreased tyrosine phosphorylation of p125FAK in growing cells or upon integrin-mediated cell adhesion. These results suggest that CAP may mediate signals for the formation of stress fibers and focal adhesions.  相似文献   

18.
Protein kinases and phosphatases regulate the activity of extracellular signal-regulated kinases 1 and 2 (ERK1/2) by controlling the phosphorylation of specific residues. We report the physical and functional association of ERK1/2 with the PTP-SL and STEP protein tyrosine phosphatases (PTPs). Upon binding, the N-terminal domains of PTP-SL and STEP were phosphorylated by ERK1/2, whereas these PTPs dephosphorylated the regulatory phosphotyrosine residues of ERK1/2 and inactivated them. A sequence of 16 amino acids in PTP-SL was identified as being critical for ERK1/2 binding and termed kinase interaction motif (KIM) (residues 224-239); it was shown to be required for phosphorylation of PTP-SL by ERK1/2 at Thr253. Co-expression of ERK2 with catalytically active PTP-SL in COS-7 cells impaired the EGF-induced activation of ERK2, whereas a PTP-SL mutant, lacking PTP activity, increased the ERK2 response to EGF. This effect was dependent on the presence of the KIM on PTP-SL. Furthermore, ERK1/2 activity was downregulated in 3T3 cells stably expressing PTP-SL. Our findings demonstrate the existence of a conserved ERK1/2 interaction motif within the cytosolic non-catalytic domains of PTP-SL and STEP, which is required for the regulation of ERK1/2 activity and for phosphorylation of the PTPs by these kinases. Our findings suggest that PTP-SL and STEP act as physiological regulators of the ERK1/2 signaling pathway.  相似文献   

19.
Cardiac fibroblasts constitute greater than 90% of the non-myocyte cells in the heart. Previously, it was established that cardiac fibroblasts are predisposed to transformation into a phenotype with muscle-specific features and that transforming growth factor-beta 1 (TGF-beta 1) is a specific inducer of this event. In this study the hypothesis that TGF-beta 1-induced phenotypic modulation of cardiac fibroblasts is associated with their altered proliferative capacity is tested. Therefore the effects of TGF-beta 1 on DNA synthesis in cardiac fibroblasts under normal conditions of cell culture and in response to a potent mitogen, basic fibroblasts growth factor (bFGF) were determined. The results showed that TGF-beta 1 at 15 ng/ml (a concentration that induces fibroblast "transformation") had a regulatory effect on proliferative capacity of cardiac fibroblasts which varied as the function of cell density in culture. In subconfluent and confluent cultures, pre-treatment of cardiac fibroblasts with TGF-beta 1 for 24 h resulted in a dramatic shift in the bFGF-induced stimulation of DNA synthesis. TGF-beta 1-induced inhibition of DNA synthesis in cardiac fibroblasts coincided with their phenotypic modulation as evidenced by the expression of sarcomeric actin mRNA and morphological changes. Cross-linking studies with [125I]-labeled TGF-beta 1 showed the presence of conventional types I, II and III TGF-beta 1 receptor complexes on cardiac fibroblasts and their binding to TGF-beta 1 under the experimental conditions. In summary, these data indicate that the proliferative capacity of cardiac fibroblasts is controlled by TGF-beta 1. They further suggest that the TGF-beta 1-induced phenotypic modulation of cardiac fibroblasts may be extended to include their altered proliferative capacity.  相似文献   

20.
The protein tyrosine phosphatase PTP-PEST displays remarkable substrate specificity, in vitro and in vivo for p130cas a signalling intermediate implicated in mitogenic signalling, cell-adhesion induced signalling, and in transformation by a variety of oncogenes. We have identified a high affinity interaction between the SH3 domain of p130cas and a proline-rich sequence (P335PPKPPR) within the C-terminal segment of PTP-PEST. Mutation of proline 337 within this sequence to alanine significantly impairs the ability of PTP-PEST to recognise tyrosine phosphorylated p130cas as a substrate, without qualitatively affecting the selectivity of the interaction. Thus the highly specific nature of the interaction between PTP-PEST and p130cas appears to result from a combination of two distinct substrate recognition mechanisms; the catalytic domain of PTP-PEST contributes specificity to the interaction with p130cas, whereas the SH3 domain-mediated association of p130cas and PTP-PEST dramatically increases the efficiency of the interaction. Furthermore, our results indicate that one important function of the p130cas SH3 domain is to associate with PTP-PEST and thereby facilitate the dephosphorylation of p130cas, resulting in the termination of tyrosine phosphorylation-dependent signalling events downstream of p130cas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号