共查询到18条相似文献,搜索用时 62 毫秒
1.
分析标准微粒群算法的性能,通过引入支持向量数据域描述方法,提出一种改进微粒群算法,保证进化过程的多样性,增强了算法的全局寻优能力.仿真结果表明,改进的算法得到了较好的效果. 相似文献
2.
传统SVDD作为一种单模态静态故障检测算法,对多模态动态过程故障的检测难以保证其检测的准确性和实时性。为了解决这一问题,提出一种基于近邻差分加权动态SVDD检测方法(NND-DWSVDD)。首先利用NND剔除数据多模态结构,保证过程数据服从单峰分布;对差分处理后的数据引入动态方法并加入权值将有用的信息凸显出来;最后利用SVDD方法建立监测模型实现在线监测。NND-DWSVDD提高了多模态动态过程故障检测率,对于多模态动态过程故障检测,NND-DWSVDD不要求多模型建模,只需单独的一个模型,符合单模态故障检测要求。通过多模态数值例子和半导体生产过程数据对该方法的有效性进行了验证。 相似文献
4.
针对间歇过程的非线性和时变性特点以及故障易误报的问题,提出了一种将移动窗-核熵成分分析(MW-KECA)故障监测与基于变量贡献的支持向量数据描述(SVDD)故障诊断集合而成的故障检测系统。MW-KECA方法构建局部模型能有效处理数据的时变性,同时保留KECA优秀的非线性处理能力。故障诊断中以各变量对CS统计量-向量间角度关系指标的贡献作为输入数据来构建SVDD分类器,相较于原始数据,故障贡献能够突出同类相似信息和异类差异信息。通过青霉素发酵仿真实验,验证了检测系统在监测准确性与故障识别率上都有良好效果,证明了该检测系统的有效性。 相似文献
5.
为克服传统过程监控方法需假设过程特征信号服从多元正态分布的缺陷,本文提出了一种将独立成分分析(ICA)与支持向量机结合的故障诊断方法。通过建立独立成分模型确定相应的统计量界限,筛选出需进一步检测的故障数据,再由支持向量机进行故障识别。将该方法用于化工聚合反应的过程监控与故障诊断中,仿真结果表明,这种混合故障诊断方法通过适当地调节统计量控制界限,不仅能够正确识别故障,而且能够纠正由误检数据引起的误报,提高故障诊断的准确率。 相似文献
6.
7.
8.
针对支持向量数据描述(SVDD)单类分类方法运算复杂度高的缺点,提出一种启发式约减支持向量数据描述(HR-SVDD)方法。以启发的方式从原有训练集中筛选出部分样本构成约减训练集,对约减训练集进行二次规划解算,得到支持向量和决策边界。通过不同宽度系数高斯核SVDD特征的讨论,证明了HR-SVDD的有效性。人工数据集和真实数据集上的实验结果表明, HR-SVDD分类精度与传统支持向量数据描述相当,但具有更快的运算速度和更小的内存占用。 相似文献
9.
对乙烯裂解炉建立实时监控模型具有重要的现实意义,而传统的多元统计过程监控方法都是假设过程处于单一工况下,而随着过程参数(进料负荷、产品组分等)的改变,工况也随之改变,传统方法便不再适用.本文针对工业过程中的多工况问题,提出了一种基于自适应模糊聚类的多模型过程监控方法,该方法可以减少监控方法对过程知识的依赖性,并且能够适应实际工业过程的非高斯性和非线性特征.首先对影响工况的过程变量利用自适应模糊聚类进行工况划分,然后对每种工况的建模数据分别利用最大方差展开(MVU)提取低维信息,再用支持向量数据描述(SVDD)建立多模型过程监控模型,最后再利用相应的统计指标进行过程监控.将上述方法应用在乙烯裂解炉上,并与基于高斯混合模型的多PCA方法(GMM-MPCA)进行了比较.仿真实验中,监控对裂解炉运行影响最大的33个变量,根据聚类有效性指标,将数据划分为5类时可以得到最佳的聚类效果.通过实验,将33维建模数据降到20维时误报率最小.仿真结果表明该方法在对非线性和非高斯性过程的监控上,能达到很好的效果,误报率和检测率均优于GMM-MPCA方法. 相似文献
10.
11.
12.
针对人脸识别中,利用粒子群算法训练支持向量机进行分类识别时存在易陷入局部最优和收敛速度慢的问题,提出一种基于雁群优化算法的人脸识别方法。将主成分分析与独立成分分析相结合提取人脸特征,利用支持向量机进行分类,在分类识别的过程中,引入雁群优化算法以提高速度和效率。实验结果表明,与标准粒子群算法相比,改进的粒子群算法提高了人脸识别率,具有较快的识别速度。 相似文献
13.
为克服医学图像微钙化点检测中假阳性高的缺点,构造了一种带拒识能力的双层支持向量模型分类器,用于钙化点检测.检测时,首先利用基于最大间隔超平面的支持向量分类器(SVC)对输入模式进行分类判决;然后通过求取真实钙化点样本特征空间最小的包含球形边界来得到钙化点样本的球形支持向量域表示(SVDD);接着利用钙化点的支持向量域表示对输入模式进行拒识或接受处理;最后利用SVC与SVDD两个分类器的结果来进行综合判决.仿真实验结果表明,该算法在不影响微钙化点的检出率的情况下,可部分解决假阳性高的问题. 相似文献
14.
The cost of highway is affected by many factors. Its composition and calculation are complicated and have great ambiguity. Calculating the cost of highway according to the traditional highway engineering estimation method is a completely tedious task. Constructing a highway cost prediction model can forecast the value promptly and improve the accuracy of highway engineering cost. This work sorts out and collects 60 sets of measured data of highway engineering; establishes an expressway cost index system based on 10 factors, including main route mileage, roadbed width, roadbed earthwork, and number of bridges; and processes the data through principal component analysis (PCA) and hierarchical cluster analysis. Particle swarm optimization (PSO) is used to obtain the optimal parameter combination of the regularization parameter and the kernel function width coefficient in least squares support vector machine (LSSVM). Results show that the average relative and mean square errors of the PCA-PSO-LSSVM model are 0.79% and 10.01%, respectively. Compared with BP neural networks and unoptimized LSSVM model, the PCA-PSO-LSSVM model has smaller relative errors, better generalization ability, and higher prediction accuracy, thereby providing a new method for highway cost prediction in complex environments. 相似文献
15.
基于SVDD和D-S理论的模拟电路故障诊断 总被引:1,自引:0,他引:1
为解决模拟电路故障诊断复杂多样难于辨识的问题和有效提高诊断准确度及速度,提出了一种融合支持向量数据描述(SVDD)算法和D-S证据理论的故障诊断方法。首先,对采集信号进行基于局部判别基的Haar小波包变换,依据判别测度选取判别能力强的前5个节点的标准能量构成特征集。然后利用SVDD算法求出特征集对于不同类别的基本信任分配函数,最后利用证据理论对不同基本信任分配函数进行组合得到最终故障诊断决策。将该方法应用于两级四运放双二次低通滤波器电路进行故障诊断,实验结果表明该方法能够准确迅速诊断出模拟电路中的故障;与基于SVDD多分类算法、一对一(o-v-o)SVM和一对多(o-v-a)SVM分类算法的故障诊断方法进行比较,本方法能够提高模拟电路故障诊断的精度;比采用o-v-o SVM和o-v-a SVM分类算法的故障诊断方法有更快的诊断速度。 相似文献
16.
支持向量机(SVM)建模的拟合精度和泛化能力取决于相关参数的选取,目前SVM中的参数的寻优一般只针对惩罚系数和核参数,而混合核函数的引入,使SVM增加了一个可调参数.针对混合核函数SVM的多参数选择问题,提出利用具有较强全局搜索能力的混沌粒子群(CPSO)优化算法对混合核函数SVM建模过程中的重要参数进行优化调整,每一... 相似文献
17.
基于粒子群算法和支持向量机的故障诊断研究 总被引:7,自引:1,他引:7
支持向量机是采用结构风险最小化原则代替传统统计学中的基于大样本的经验风险最小化原则的新型机器学习方法,具有出色的学习分类能力和推广能力,广泛地应用于模式识别和函数拟合中;支持向量机中核函数的参数选择非常重要,它决定着故障诊断的精确度;为了提高电气设备故障诊断的精度和效率,将粒子群优化算法和最小二乘支持向量机相结合,提出了一种基于粒子群支持向量机的故障诊断方法,能够实现对核函数的σ参数进行快速动态选取,提高故障诊断的准确率和效率;实验表明,该方法能够有效地找出合适的核参数,并能取得较好的分类效果。 相似文献
18.
支持向量机和粒子群算法在结构优化中的应用研究* 总被引:1,自引:1,他引:1
针对实际复杂结构优化中计算量大的问题,提出将支持向量机代理模型和粒子群算法应用于工程优化设计。采用实验设计选取合适的样本,通过实验或数值仿真获得性能响应,利用支持向量机构建目标函数和约束的代理模型,重构原始的优化问题,采用粒子群优化算法对重构的优化模型进行寻优,从而得到最优解。以典型电子装备功分器的结构尺寸优化为例,采用拉丁方实验设计和高频电磁场仿真软件HFSS获取代理模型的训练样本,建立功分器模型的幅度比、相位差和驻波三个目标函数模型,并对该多目标优化问题进行寻优。结果表明该方法准确、高效,为结构优化设 相似文献