首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mesoporous nickel oxide (NiO) nanoparticles were synthesized by the thermal decomposition reaction of Ni(NO3)2·9H2O using oxalic acid dihydrate as the mesoporous template reagent. The pore structure of nanocrystals could be controlled by the precursor to oxalic acid dihydrate molar ratio, thermal decomposition temperature and thermal decomposition time. The structural characteristic and textural properties of resultant nickel oxide nanocrytals were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), N2 adsorption–desorption isotherm and temperature programmed reduction. The results showed that the most excellently mesoporous nickel oxide particles (m-Ni-1-4) with developed wormlike pores were prepared under the conditions of the mixed equimolar precursor and oxalic acid and calcined for 4 h at 400 °C. The specific surface area and pore volume of m-Ni-1-4 are 236 m2 g?1 and 0.42 cm3 g?1, respectively. Over m-Ni-1-4 at space velocity = 20,000 mL g?1 h?1, the conversions of toluene and formaldehyde achieved 90 % at 242 and 160 °C, respectively. It is concluded that the reactant thermal decomposition with oxalic acid assist is a key step to improve the mesoporous quality of the nickel oxide materials, the developed mesoporous architecture, high surface area, low temperature reducibility and coexistence of multiple oxidation state nickel species for the excellent catalytic performance of m-Ni-1-4.  相似文献   

2.
Aluminum (Al) surfaces with ultra-repellency as well as desirable robustness were designed and fabricated. With photolithographic patterning of a thick SU-8 layer and sputtering of a thin Al film, re-entrant micro-pillar textured Al surfaces were prepared. After derivatization with perfluoroalkyl phosphoric acid (FPA), the textured Al surfaces showed ultra-repellency for a wide variety of liquids. The contact angles (CAs) of deionized (DI) water, hexadecane and dodecane were larger than 150°, and those of methanol and ethanol were larger than 100°. The sliding angles (SAs) of DI water, hexadecane and dodecane were 5°, 10°, and 10°, respectively, showing excellent superamphiphobicity. The SAs of methanol and ethanol were in the range of 20°–30°. The robustness of the ultra-repellent Al surface was evaluated by three parameters: robust height (H*), robust angle (T*) and robust factor (A*). For the DI water probing, the values of the parameters are H* ≈ 403, T* ≈ 119 and A* ≈ 92, respectively, indicative of a desirable robustness. We clarified that only re-entrant structures can support composite liquid–solid–vapor interfaces when the corresponding Young’s CAs are smaller than 90°, and the function of the nanometer structures of the hierarchical textures which were widely adopted to fabricate superamphiphobic surfaces is to help construct re-entrant structures. FPA derivatization is effective in lowering the surface energy of Al surfaces, combining with re-entrant textures to provide a simple and high throughput approach to ultra-repellency for a wide variety of liquids.  相似文献   

3.
Fabrication of anodic alumina membrane with ultra-large pore intervals is still a challenge because it is difficult to maintain stable anodization without breakdown or burning of the alumina due to the corrosive acid attack at high electric fields. A novel strategy is proposed that the undesired burning phenomena of the alumina can be avoided at relatively high voltage anodization in ethylene glycol-modified citric acid solution at room temperature, and an ultra-large pore interval up to 1,800 nm was achieved at 700 V. A large pore of 800 nm was readily obtained by chemical etching of the alumina pore wall in 5.0 wt% H3PO4 solution.  相似文献   

4.
We investigated the role of olfactory cues from actively fermenting yeast (Saccharomyces cerevisiae) in attraction of adult Philornis downsi and identified two synergistically attractive yeast volatiles. Larvae of this invasive fly parasitize the hatchlings of passerines and threaten the Galapagos avifauna. Gas chromatography coupled with electroantennographic detection (GC-EAD), coupled gas chromatography-mass spectrometry (GC-MS), and field trapping experiments were used to identify volatile compounds from a yeast-sugar solution. EAD responses were consistently elicited by 14 yeast volatiles. In a series of field trapping experiments, a mixture of the 14 EAD-active compounds was similarly attractive to P. downsi when compared to the yeast-sugar solution, and we found that acetic acid and ethanol were essential for attraction. A mixture of 0.03 % acetic acid and 3 % ethanol was as attractive as the 14-component blend, but was not as attractive as the yeast-sugar solution. Philornis downsi showed positive and negative dose-responses to acetic acid in the ranges of 0.01 ~ 0.3 % and 0.3 ~ 9 %, respectively. Further optimization showed that the mixture of 1 % acetic acid and 3 % ethanol was as attractive as the yeast-sugar solution. Both mixtures of acetic acid and ethanol were more selective than the yeast-sugar solution in terms of non-target moths and Polistes versicolor wasps captured. These results indicate that acetic acid and ethanol produced by yeasts are crucial for P. downsi attraction to fermented materials on which they feed as adults and can be used to manage this invasive fly in Galapagos.  相似文献   

5.
(Z)-4-undecenal (Z4-11Al) is the volatile pheromone produced by females of the vinegar fly Drosophila melanogaster. Female flies emit Z4-11Al for species-specific communication and mate-finding. A sensory panel finds that synthetic Z4-11Al has a characteristic flavour, which can be perceived even at the small amounts produced by a single female fly. Since only females produce Z4-11Al, and not males, we can reliably distinguish between single D. melanogaster males and females, according to their scent. Females release Z4-11Al at 2.4 ng/h and we readily sense 1 ng synthetic Z4-11Al in a glass of wine (0.03 nmol/L), while a tenfold concentration is perceived as a loud off-flavour. This corroborates the observation that a glass of wine is spoilt by a single D. melanogaster fly falling into it, which we here show is caused by Z4-11Al. The biological role of Z4-11Al or structurally related aldehydes in humans and the basis for this semiochemical convergence remains yet unclear.  相似文献   

6.
A two-step anodization process performed at 0 °C was used to prepare highly ordered porous anodic alumina on the AA1050 alloy and high purity aluminum foil. The anodizing of both substrates was carried out in 0.3 M sulfuric acid and 0.3 M oxalic acid baths at 25 V and 40 V, respectively. The effect of the extended duration of the second anodizing step on pore order degree and structural features of AAO membranes was studied. The presence of alloying elements affects not only the rate of oxide growth but also the microstructure of the anodic film. It was found that pore circularity and regularity of pore arrangement in AAO membranes formed on the AA1050 alloy were always worse than those observed on the pure Al substrate. The structural features, such as pore diameter, interpore distance, wall thickness, barrier layer thickness, porosity and pore density of porous anodic alumina formed on AA1050 are a little different from those obtained for high purity Al. The extended time of the second anodizing step, up to 16 h does not affect significantly the regularity of pore order and all structural features of AAO membranes, independently of the anodizing electrolyte.  相似文献   

7.
The kinetics and thermodynamics of the esterification of citric acid (CA) and monoglycerides (MGs) for citrate esters of monoacylglycerols catalyzed by Novozym 435 in tert-butyl alcohol system was studied in this work. The relationship between initial reaction rate and temperature was established, based on the Arrhenius law. A linear relationship was established between the initial reaction rate and enzyme load up to 3 g/L, which demonstrated that the influence of external mass transfer limitations on the reaction could be eliminated. The reaction kinetics agreed with the Ping-Pong Bi–Bi mechanism with CA inhibition characterized by V max, K B, K A, and K iA , values of 0.7092 mmol/(min g), 0.0553, 0.0136 and 0.1948 mol/L, respectively. The model was used to simulate the reaction process. The values calculated from the kinetic mode agreed well with the experimental rate data under the different MG and CA concentrations.  相似文献   

8.
Synthesis and ion transport characterization of a new K+-ion conducting nano-composite polymer electrolytes (NCPEs): (1?x) [70PEO:30KBr] + x SiO2, where 0 < x < 20 wt%, are reported. The present NCPEs have been cast using a novel hot-press technique in place of the traditional solution cast method. The conventional solid polymer electrolyte (SPE) composition: (70PEO:30KBr), identified as the highest conducting composition at room temperature, has been used as first-phase host matrix and nano-size (~8 nm) particles of SiO2 as second-phase dispersoid. As a consequence of dispersal of SiO2 in SPE host, two orders of conductivity enhancement have been observed in NCPE composition: [95(70PEO:30KBr) + 5SiO2] and this has been referred to as optimum conducting composition (OCC). The polymer-salt/nano-filler SiO2 complexation and thermal properties characterization were done with the help of XRD, FTIR, SEM, DSC and TGA studies. The ion transport behavior in NCPEs have been discussed on the basis of experimental measurements on some basic ionic parameters, viz. conductivity (σ), ionic mobility (μ), mobile ion concentration (n), ionic transference number (t ion), etc. The temperature-dependent conductivity studies of NCPE OCC have been done and activation energy (E a) value was determined using log σ?1/T Arrhenius plot.  相似文献   

9.
10.
Trans fatty acids (TFA) intake has been linked to cardiovascular diseases and liver diseases; yet the effect of TFA on inflammation remains controversial. Accordingly, the objective of this paper was to determine the in vitro effects of TFA on inflammatory gene expression. Human umbilical vein endothelial cells (HUVEC) and human hepatocellular carcinoma (HepG2) cells were treated for 24 h with either trans-vaccenic acid (tVA), trans-palmitoleic acid (tPA) or elaidic acid (EA) at concentrations of 5–150 µM, or with a mixture of tVA and tPA (150/50 µM). All TFA were highly incorporated into cell membranes, as determined by gas chromatography, representing 15–20% of total fatty acids in HUVEC and 3–8% in HepG2 cells. Incorporation of EA, a common industrial TFA, increased the ratio of the stearoyl-CoA desaturase (SCD-1), a key enzyme involved in fatty acid metabolism. Ruminant TFA, including tVA, tPA and the mixture of tVA and tPA, significantly reduced the TNF-α-induced gene expression of TNF, VCAM-1 and SOD2 in HUVEC, as well as TNF and IL-8 in HepG2 cells. EA also decreased inflammatory gene expression in HUVEC, but not in HepG2 cells. The inhibition of peroxisome proliferator-activated receptor (PPAR)-γ did not influence the effects of TFA on gene expression. Overall, physiological and supraphysiological concentrations of TFA, especially tVA and tPA, prevented inflammatory gene expression in vitro. This effect is independent of PPAR-γ activation and may be due to an alteration of fatty acid metabolism in cell membranes caused by the high incorporation of TFA.  相似文献   

11.
In this work, chitin flakes were deacetylated with 50% (w/v) sodium hydroxide under nitrogen atmosphere at 120 °C for 80 min to obtain chitosan. The chitosan produced was characterized for degree of deacetylation (DD) and molecular weight. Chitosan with the DD of 78–80% was reproducibly obtained. Molecular weight showed an inverse relationship with concentration of NaOH. Chitosan nanofibrous membrane was prepared via the electrospinning of chitosan/polyvinyl alcohol (CH/PVA) aqueous solutions with varying blend compositions. The characteristics of CH/PVA nanofibrous membranes were studied as a function of viscosity of solution and applied voltage. A uniform nanofibrous membrane of average fibre diameter of 80–300 nm was obtained with blend of 2% (w/v) chitosan solution in 1% (v/v) acetic acid and 5% (w/v) PVA in distilled water in the electric field of 20–25 kV with varying proportion of CH/PVA. With the CH/PVA mass ratios; 40/60 to 10/90, electrospinning of nanofibres could be done. The electrospun nanofibrous membrane was analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Thermo gravimetric analysis (TGA). SEM images showed that the morphology and diameter of the nanofibres were mainly affected by the weight ratio of CH/PVA. XRD and FTIR confirmed the strong intermolecular hydrogen bonding between the molecules of Chitosan and PVA.  相似文献   

12.
The present study demonstrates the separation of a critical pair of conjugated linolenic acid (CLN) isomers—jacaric acid (JA; c8, t10, c12-18:3) and punicic acid (PA; c9, t11, c13-18:3)—on a 60-m conventional Supelcowax 10 column. The alkyl esters of different alcohols (C1–C8) of JA and PA were prepared and analyzed isothermally at 220, 230 and 240 °C. The adequacy of their separation was determined from the separation factors (α) and peak resolutions (R s). Acceptable resolution (R s = 1.01) of JA and PA was obtained with their 2-ethyl-1-hexyl ester derivatives at a column temperature of 230 °C. In addition, the Gibbs energy of transfer from solution to gas of the three double bonds \((\Delta_{\text{sln}}^{\text{g}} G_{\text{u}}\)) could be used to describe the interactions of the double bond with the stationary phase. Characterization of 2-ethyl-1-hexyl esters of Jacaranda mimosifolia seed oil at 230 °C demonstrates that the oil contains JA and α- and β-calendic acid as a CLN without the presence of PA. The results suggested that JA could be resolved from PA on a 60-m Supelcowax 10 column as the ethyl hexyl ester.  相似文献   

13.
Large colorless single crystals of FAU-type zeolites were synthesized from gels with the composition xSiO2 : 2.0NaAlO2 : 7.5NaOH : 454H2O : 5.0TEA, where x = 2.0–6.0. FAU-type zeolite with Si/Al = 1.26(4) was nearly pure and the maximum size of the single crystals was ca. 150 μm. In case of FAU-type zeolites with Si/Al = 1.54(5), the maximum size of single crystals was ca. 200 μm and the ratio of FAU/impurity was 0.07. The framework Si/Al ratio of the as-synthesized FAU-type zeolite tended to increase with the Si/Al ratio of gel composition. All of the large single crystals had good crystallinities for single-crystal X-ray diffraction, leading to enough numbers of significant reflections which have strong intensity. The structure of a single crystal of dehydrated zeolite Na-X (Si/Al = 1.41(4)) with composition |Na80|[Si112Al80O384]-FAU per unit cell was determined by X-ray diffraction methods in the cubic space group \( Fd \bar{3} m; \) a = 24.9434(6) Å at 294 K. The structure was refined by using all intensities to the final error indices (using only the 771 reflections for which F o > 4σ(F o)), R 1 = 0.048 (based on F) and R 2 = 0.188 (based on F 2). In the crystallographic studies, the Si/Al ratio of the synthetic FAU-type zeolite is 1.41(4) which is quite consistent with the SEM–EDS analysis.  相似文献   

14.
Physical blends (PB) of high oleic sunflower oil and tristearin with 20 and 30% stearic acid and their interesterified (IE) products where 20 and 30% of the fatty acids are stearic acid at the sn-2 position crystallized without and with application of high intensity ultrasound (HIU). IE samples were crystallized at supercooling temperatures (ΔT) of 12, 9, 6, and 3 °C while PB were crystallized at ΔT = 12 °C. HIU induced crystallization in PB samples, but not in the IE ones. Induction in crystallization with HIU was also observed at ΔT = 6 and 3 °C for IE C18:0 20 and 30% and at ΔT = 9 °C only for the 30% samples. Smaller crystals were obtained in all sonicated samples. Melting profiles showed that HIU induced crystallization of low melting triacylglycerols (TAGs) and promoted co-crystallization of low and high melting TAGs. In general, HIU significantly changed the viscosity, G′, and G″ of the IE 20% samples except at ΔT = 12 °C. While G′ and G″ of IE 30% did not increase significantly, the viscosity increased significantly at ΔT = 9, 6, and 3 °C from 1526 ± 880 to 6818 ± 901 Pa.s at ΔT = 3 °C. The improved physical properties of the sonicated IE can make them good contenders for trans-fatty acids replacers.  相似文献   

15.
The microstructural transition of aqueous 0.1 M cetylpyridinium chloride (CPC) in the combined presence of salt KBr and long chain alcohol (C9OH-C12OH) has been studied as a function of alcohol concentration, electrolyte concentration and temperature. The viscosity of the CPC/KBr micellar system showed a peaked behavior with alcohol concentration (C 0), due to alcohol induced structural transition, which was confirmed by dynamic light scattering (DLS) and rheological analysis. Besides C 0, the chain length of alcohol (n) was found to show a remarkable effect on the micellization behavior of CPC/KBr system. It was observed that the ability of alcohol to induce micelle growth diminishes with n, which was well supported by viscosity, rheology and DLS measurements. To examine the effect of the electrolyte on the micellar growth, the salt concentration was varied from 0.05 to 0.15 M and it was observed that with increase in [KBr], the peak position shifts towards lower C 0. The effect of temperature on the micellar system showed interesting phase behavior for CPC/KBr/Decanol. The system exhibited a closed solubility loop with an upper critical solution temperature (UCST) > the lower critical solution temperature (LCST), reminiscence of nicotine-water system. The role of surfactant head group on the structural evolution was revealed by comparing the present results with our previous report for similar micellar system, CTAB/KBr/long chain alcohol.  相似文献   

16.
Ionic liquid (IL)-based supercapacitors have been widely demonstrated to outperform electrochemical double-layer capacitors (EDLCs) working with conventional organic electrolytes in terms of specific energy and operating voltage. Here, the results of a study on the leakage currents (I leak) and self-discharge energy loss factors (SDLF) of IL-based EDLCs at different cell voltages up to 3.2 V and at 30° and 60 °C are reported. Cells assembled with the N-butyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl) imide (PYR14TFSI) and N-methoxyethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide pure ILs and a mixture of PYR14TFSI and propylene carbonate (PC) 1 to 1 molar were tested. The results are compared to those achieved with EDLCs featuring the conventional 1 M tetraethyl ammonium tetrafluoroborate (Et4NBF4)-PC electrolyte. The study demonstrates that ILs provide I leak and SDLF that are lower than those obtained with the latter electrolyte, with PYR14TFSI allowing the lowest values.  相似文献   

17.
A series of well-defined novel amphiphilic temperature-responsive graft copolymers containing PCL analogues P(αClεCL-co-εCL) as the hydrophobic backbone, and the hydrophilic side-chain PEG analogues P(MEO2MA-co-OEGMA), designated as P(αClεCL-co-εCL)-g-P(MEO2MA-co-OEGMA) have been prepared via a combination of ring-opening polymerization (ROP) and atom transfer radical polymerization (ATRP). The composition and structure of these copolymers were characterized by 1H NMR and GPC analyses. The self-assembly behaviors of these amphiphilic graft copolymers were investigated by UV transmittance, a fluorescence probe method, dynamic light scattering (DLS) and transmission electron microscopy (TEM) analyses. The results showed that the graft copolymers exhibited the good solubility in water, and was given the low critical temperature (LCST) at 35(±1) °C, which closed to human physiological temperature. The critical micelle concentrations (CMC) of P(αClεCL-co-εCL)-g-P(MEO2MA-co-OEGMA) in aqueous solution were investigated to be 2.0 × 10?3, 9.1 × 10?4 and 1.5 × 10?3 mg·mL?1, respectively. The copolymer could self-assemble into sphere-like aggregates in aqueous solution with diverse sizes when changing the environmental temperature. The vial inversion test demonstrated that the graft copolymers could trigger the sol-gel transition which also depended on the temperature.  相似文献   

18.
The spun tapes of synthesized PAN, its copolymer with 1 wt% itaconic acid, and doped version with 1 wt% sodium dodecyl sulfate (SDS) all showed stripy, even, and compact cross-sections as the hallmark of gel forming products. PAN doping with SDS and acrylonitrile copolymerization with itaconic acid reduced its dimethylformamide (DMF) solution structural viscosity index (Δη) by 50% and 30%, respectively, at 675 s??1. In addition, the modification of synthesized PAN through doping and acrylonitrile copolymerization with itaconic acid led to severe and mild gelation temperature decrease, respectively. The stabilization peak of the synthesized PAN tape was enhanced as much as 25 °C by 900% hot drawing, decreased by about 10 °C through copolymerization, while experienced small temperature changes through doping. The second derivative of Fourier transform infrared and Gaussian fitting was used to analyze the tapes cyclization due to stabilization treatment through introducing Isd index. 10 min Isd index was raised as much as 430% and 800% in comparison with the synthesized PAN through its doping or acrylonitrile copolymerization with itaconic acid, respectively. Further 180 min of Isd index, however, showed the same proportional increase as toughness of the drawn tapes versus their heat of stabilization through their physical and chemical modifications.  相似文献   

19.
Three amidosulfobetaine surfactants were synthesized namely: 3-(N-pentadecanamidopropyl-N,N-dimethyl ammonium) propanesulfonate (2a); 3-(N-heptadecanamidopropyl-N,N-dimethyl ammonium) propanesulfonate (2b), and 3-(N-nonadecanamidopropyl-N,N-dimethyl ammonium) propanesulfonate (2c). These surfactants were prepared by direct amidation of commercially available fatty acids with 3-(dimethylamino)-1-propylamine and subsequent reaction with 1,3-propanesultone to obtain quaternary ammonium salts. The synthesized surfactants were characterized by IR, NMR and mass spectrometry. Thermogravimetric analysis (TGA) results showed that the synthesized surfactants have excellent thermal stability with no major thermal degradation below 300 °C. The critical micelle concentration (CMC) values of the surfactants 2a and 2b were found to be 2.2 × 10?4 and 1.04 × 10?4 mol/L, and the corresponding surface tension (γCMC) values were 33.14 and 34.89 mN m?1, respectively. The surfactants exhibit excellent surface properties, which are comparable with conventional surfactants. The intrinsic viscosity of surfactant (2b) was studied at various temperatures and concentrations of multi-component brine solution. The plot of natural logarithm of relative viscosity versus surfactant concentration obtained from Higiro et al. model best fit the surfactant behavior. Due to good salt resistance, excellent surface properties and thermal stability, the synthesized surfactant has potential to be used in various oil field applications such as enhanced oil recovery, fracturing, acid diversion, and well stimulation.  相似文献   

20.
The potential cause–effect relationship between uric acid plasma concentrations and HDL functionality remains elusive. Therefore, this study aimed to explore the effect of oxonic acid (OA)-induced hyperuricemia on the HDL size distribution, lipid content of HDL subclasses, and apo AI turnover, as well as HDL functionality in New Zealand white rabbits. Experimental animals received OA 750 mg/kg/day by oral gavage during 21 days. The HDL-apo AI fractional catabolic rate (FCR) was determined by exogenous labeling with 125I, and HDL subclasses were determined by sequential ultracentrifugation and PAGE. Paraoxonase-1 activity (PON-1) and the effect of HDL on relaxation of aorta rings in vitro were determined as an indication of HDL functionality. Oxonic acid induced a sixfold increase of uricemia (0.84 ± 0.06 vs. 5.24 ± 0.12 mg/dL, P < 0.001), and significant decreases of triglycerides and phospholipids of HDL subclasses, whereas HDL size distribution and HDL-cholesterol remained unchanged. In addition, HDL-apo AI FCR was significantly higher in hyperuricemic rabbits than in the control group (0.03697 ± 0.0038 vs. 0.02605 ± 0.0017 h?1 respectively, P < 0.05). Such structural and metabolic changes were associated with lower levels of PON-1 activities and deleterious effects of HDL particles on endothelium-mediated vasodilation. In conclusion, hyperuricemia is associated with structural and metabolic modifications of HDL that result in impaired functionality of these lipoproteins. Our data strongly suggest that uric acid per se exerts deleterious effects on HDL that contribute to increase the risk of atherosclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号