共查询到20条相似文献,搜索用时 15 毫秒
1.
A theoretical model for the evaluation of the elastic modulus in particulate composites has been developed. The method takes into account the contiguity of the particles and also the existence of an interphase between main phases, which constitutes an important parameter influencing the behavior of a composite material. This layer between the matrix and filler develops different physico-chemical properties from those of the constituent phases and variables along its thickness. The effect of the progressive variation of the elastic modulus of the interphase on the modulus of the composite was estimated by assuming a law of variation. The theoretical values derived from the proposed model were compared with experimental results carried out on iron-particulate-filled epoxy composites and with theoretical values derived from models of other scientists. This comparison was proved to be satisfactory for our proposed model. 相似文献
2.
The aim of this investigation is to determine the effect of low‐filler volume fraction on the elastic modulus and the thermal expansion coefficient of particulate composites. In the theoretical part, theoretical model valid for low‐filler volume fractions is used to evaluate these two magnitudes. In the experimental part, low‐percentage filler contents of 3, 5, 7, and 10% are used. The density for these epoxy resin‐iron particle composites is also determined. At the same time, an attempt to explain some of the disagreements observed between theoretical values and experimental data on a qualitative basis is also made. This attempt is in part assisted by scanning electron microscopy (SEM) observations concerning structural inhomogeneities and fractographical data. The comparison of the theoretical values derived from the present model with experimental results and with theoretical values derived from other workers appears satisfactory in many cases, but in some others the discrepancies among them are considerable. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
3.
During the cure of thermosetting polymer composites, the presence of reinforcing fibers significantly alters the resin composition in the vicinity of the fiber surface via several microscale processes, forming an interphase region with different chemical and physical properties from the bulk resin. The interphase composition is an important parameter that determines the micromechanical properties of the composite. Interphase development during processing is a result of the mass‐transport processes of adsorption, desorption, and diffusion near the fiber surface, which are accompanied by simultaneous cure reactions between the resin components. Due to complexities of the molecular‐level mechanisms near the fiber surface, few studies have been carried out on the prediction of the interphase evolution as function of the process parameters. To address this void, a kinetics model was developed in this study to describe the coupled mass‐transfer and reaction processes leading to interphase formation. The parameters of the model were determined for an aluminum fiber/diglycidyl ether of bisphenol‐A/bis( p‐aminocyclohexyl)methane resin system from available experimental data in the literature. Parametric studies are presented to show the effects of different governing mechanisms on the formation of the interphase region for a general fiber–resin system. The interphase structure obtained from the model may be used as input data for the prediction of the overall composite properties. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3220–3236, 2003 相似文献
4.
Asbestos fibres, of the chrysotile variety, and chopped carbon fibres were pretreated by an in-situ polycondensation technique eventually resulting in a polyamide coating on the fibre surface. Ionomer based composites containing either carbon or asbestos fibres in random in plane fibre orientation were prepared, and the influence of this coating process on the tensile properties was investigated. It was found that for the asbestos-filled composites the presence of the nylon 6,6 interlayer improves the tensile performance, especially at moderate polyamide depositions. This is not the case with the pretreated carbon-filled composites for which carbon fibres with higher polyamide contents are preferred. Combinations of the treated asbestos fibres with carbon and/or aramid fibres may be used to reduce the asbestos content in asbestos-only based engineering plastics. 相似文献
5.
What might happen with the interphase region of composite if the sizing agent cannot afford the attack of processing temperature and firstly reacted before its combination with the resin, is rarely reported. On the basis of this, herein, effects of sizing reaction on the interphase region of composite were investigated, as well as on the carbon fiber surface properties. It showed that the interfacial shear strength of carbon fiber/epoxy composite was improved after the sizing reaction. The interphase modulus was also increased with a thinner gradient distance. Further analysis indicated that the fiber surface roughness increased, the fiber wettability with the resin lowered, and the chemical reactions between sizing agent and resin reduced after 200°C/2 h treatment on carbon fiber. These results explained the change of the interphase region, which are meaningful for sizing optimization. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41917. 相似文献
6.
The objective of this study was to develop some new concepts of importance when trying to optimize the viscosity/modulus and impact relative to the particle‐size distribution in suspensions and particulate composites. The results of this study appear to indicate that, conceptually, it is possible to significantly improve the viscosity versus the impact balance for material formulations by optimizing the particle‐size distribution. For binary particle‐size distributions, the influence of the preferred particle‐size distribution, as determined using a square‐root distribution, did not yield the most desirable particle‐size distribution if the particle‐to‐particle component of the interaction coefficient was high. However, if three or more particles were utilized in the distribution, then the optimum particle‐size distribution utilized can apparently be characterized using the square‐root distribution even when the particle–particle component, σ pc, of the interaction coefficient, σ, was found to be quite high. In addition, this same square‐root particle‐size distribution can also satisfactorily predict a probability of impact that can remain consistently high as long as the particles utilized are well chosen and not too close in size. Thus, this preferred particle‐size distribution can be utilized to predict at least one of the preferred distributions to optimize the balance of properties between impact and the viscosity/modulus. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 291–304, 2002 相似文献
7.
Microsized aluminum/epoxy resin composites were prepared, and the thermal and dielectric properties of the composites were investigated in terms of composition, aluminum particle sizes, frequency, and temperature. The results showed that the introduction of aluminum particles to the composites hardly influenced the thermal stability behavior, and decreased Tg of the epoxy resin; moreover, the size, concentration, and surface modification of aluminum particles had an effect on their thermal conductivity and dielectric properties. The dielectric permittivity increased smoothly with a rise of aluminum particle content, as well as with a decrease in frequency at high loading with aluminum particles. While the dissipation factor value increased slightly with an increase in frequency, it still remained at a low level. The dielectric permittivity and loss increased with temperature, owing to the segmental mobility of the polymer molecules. We found that the aluminum/epoxy composite containing 48 vol % aluminum‐particle content possessed a high thermal conductivity and a high dielectric permittivity, but a low loss factor, a low electric conductivity, and a higher breakdown voltage. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献
8.
Recently, four significantly different particulate composite modulus derivations from the literature were found to yield the same theoretical “intrinsic modulus” for a particulate composite. In this article, this new intrinsic modulus was successfully combined with the generalized viscosity/modulus equation to yield a good fit of the shear modulus–particulate concentration data of both Smallwood and Nielsen using a variable intrinsic modulus. Some fillers yielded an intrinsic modulus that was close to the Einstein limiting value ([ G] = [η] = 2.5), while other fillers yielded intrinsic moduli that were either somewhat larger or somewhat smaller than this value. The intrinsic modulus for carbon black in rubber was much larger than was Einstein's predicted value. However, intrinsic modulus values for Nielsen's data for particulate composites were smaller than were Einstein's prediction at temperatures below the glass transition temperature of the matrix. The explanation for this phenomenon can easily be understood from a review of the properties of the intrinsic modulus. Likewise, the generalized viscosity/modulus equation was also successfully applied to available modulus literature for ceramics where voids were the particulate phase. When applied to Wang's data, the intrinsic modulus was found to be negative when describing the compaction of voids in the hot isostatic pressing of a ceramic. For this application, the modulus of a particulate composite as a function of the volume fraction of particles was modified to describe the modulus as a function of porosity. For the sets of data analyzed, values of the interaction coefficient and the packing fraction were not necessarily unique if the data sets were limited to the lower particulate volume fractions. For applications where a minimum amount of data was found to be available, a new approach was introduced to address a relative measure of the compatibility of the particle and the matrix using a new definition for Kraemer's constant. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 1954–1963, 2000 相似文献
9.
This study was focused on the synthesis of monodisperse poly( n‐butyl methacrylate‐ co‐methyl methacrylate) submicrospheres via soap‐free emulsion polymerization and on their characterization. The glass‐transition temperatures of poly( n‐butyl methacrylate) and poly(methyl methacrylate) were approximately 25 and 110°C, respectively. Therefore, submicrospheres with different glass‐transition temperatures could be obtained through the variation of the copolymer composition. In addition, relationships between the monomer feed concentration ( M0) and the Mark–Houwink constant (α) for the copolymer submicrospheres were proposed. The molecular weights of the copolymer submicrospheres decreased sharply with an increase in the weight fraction of n‐butyl methacrylate. On the contrary, the particle diameter increased linearly from 277 to 335 nm with an increase in the weight fraction of n‐butyl methacrylate. The α values decreased with an increase in M0, and this indicated that the branched structures of the copolymer submicrospheres were easily obtained when M0 was higher than 0.11 g/mL of water. Consequently, the results of this study are expected to provide useful information for the synthesis of monodisperse copolymer submicrospheres by soap‐free emulsion polymerization. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
10.
A method for predicting the stress-strain and volumetric behavior of particulate composites from constituent properties has been developed for large values of strain. This approach allows a simple model for systems in which damage occurs without resorting to complicated constitutive equations. An energy balance derived from the first law of thermodynamics and the equations of linear elasticity calculates critical strain values at which filler particles will dewet when subjected to uniaxial tension and superimposed pressure. Calculations of critical strains over the entire strain history using reevaluated material properties accounting for the damage yield highly nonlinear stress-strain and volumetric curves. Experimentally observed dependences on particle size, filler concentration, matrix and filler properties, and superimposed pressure are correctly predicted. The method has no adjustable parameters, and allows several idealized models of the dewetting process to be examined. Comparisons of model predictions to experimental data show good agreement. 相似文献
11.
The use of rigid fillers to toughen polymers has received considerable attention in recent years. The role of the rigid particle here is that of debonding, at some stage, from the matrix, thus triggering dilatational processes similar to those observed in rubber‐toughened polymers. The role of particle size in these rigid filled composites has not been studied in great detail. In this work, volume strain measurements were carried out on a series of particulate composites based on polypropylene filled with calcium carbonate (CC) particles with average diameters of 0.07, 0.7, and 3.5 μm and filler volume fractions ranging from 0.05 to 0.30. The experimental results have shown a strong particle size effect. A model is proposed to take this effect into account, based upon the formation of an immobilized layer of polymer on the surface of the filler particles. The experimental results are consistent with a surface layer of 15–25 nm. The results are discussed in relation to the fracture behavior of these composites reported earlier. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 925–935, 2004 相似文献
12.
The influence of particle size on particulate fouling rates during convective sensible heat transfer to liquids has been investigated. Experiments have been carried out using aluminum oxide particles with nominal diameters ranging from 0.06 μm to 15 μm, suspended in an organic solvent for a wide range of concentrations. The observed influence of particle size on the asymptotic fouling resistance is compared with the predictions of the Watkinson–Epstein model. The results of this comparison suggest that, in addition to the changes of mass transfer coefficient with increasing particle size, reduced adhesion forces between particles and wall and increasing removal forces have to be considered as well. Additionally, the influence of different particle/fluid combinations was investigated. Experiments were performed with aluminum oxide particles suspended in isopropanol, isobutanol or water, and with kaolin particles suspended in water. 相似文献
13.
Water resistance of particulate fly-ash-epoxide composites, cured at low temperature by means of synthetic polyalkylenepolenepolyaminophenolic products, was tested at room temperature. Siliceous fly-ash (20% w/w) as filler reduces water penetration into the matrices, while saturation with water does not strongly affect the properties of the composites. The low value of the water diffusion coefficient through the material and the high mechanical properties of the particulate composites suggest further experimentation for its application in the confinement of low and medium activity nuclear wastes or of toxic chemical wastes. 相似文献
14.
Interphase between the fibers and matrix plays a key role on the properties of fiber reinforced composites. In this work, the effect of interphase on mechanical properties and microstructures of 3D C f/SiBCN composites at elevated temperatures was investigated. When PyC interphase is used, flexural strength and elastic modulus of the C f/SiBCN composites decrease seriously at 1600°C (92 ± 15 MPa, 12 ± 2 GPa), compared with the properties at room temperature (371 ± 31 MPa, 31 ± 2 GPa). While, the flexural strength and elastic modulus of C f/SiBCN composites with PyC/SiC multilayered interphase at 1600°C are as high as 330 ± 7 MPa and 30 ± 2 GPa, respectively, which are 97% and 73% of the values at room temperature (341 ± 20 MPa, 41 ± 2 GPa). To clarify the effect mechanism of the interphase on mechanical properties of the C f/SiBCN composites at elevated temperature, interfacial bonding strength (IFBS) and microstructures of the composites were investigated in detail. It reveals that the PyC/SiC multilayered interphase can retard the SiBCN matrix degradation at elevated temperature, leading to the high strength retention of the composites at 1600°C. 相似文献
15.
Ecofriendly materials are becoming a need of the day. We have severe setback when there is lot of use of agro wastes in plastics. To reduce pure plastic use in agriculture, this study has been made to find some remedial measure. In the process, we sought the effect of addition of rice husk (RH) in polyvinylchloride (PVC) on the dielectric properties at different frequency and temperature has been studied. Measurements have been performed in the frequency range from 1 to 10 kHz and temperature range of 32–80°C. The experimental results show that dielectric constant (ε′) increases with the addition of RH in PVC. Dielectric constant (ε′) decreases with increasing frequency, which indicates that the major contribution to the polarization comes from orientation polarization. Dielectric constant (ε′) increases with increasing temperature due to greater freedom of movement of dipoles within PVC at higher temperatures. A theoretical model for dielectric constant with temperature and frequency dependent is proposed. Experimental results are in good agreement with the proposed theoretical model. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012 相似文献
16.
以酚醛树脂为前体、碳纤维针刺预制体为增强体,采用溶胶-凝胶、常压干燥方法制备得到纳米孔酚醛气凝胶/碳纤维复合材料。在不改变材料密度的条件下,通过调节固化剂的用量来调控酚醛气凝胶的纳米颗粒尺寸及孔隙结构,改变气凝胶颗粒在碳纤维针刺预制体中的填充状态,制备出不同微观结构的复合材料。研究表明:随着固化剂用量的减少,气凝胶的颗粒粒径逐渐变小,平均孔径在230 nm~5μm范围内可调;与碳纤维复合后,随着气凝胶颗粒的减小,复合材料的力学性能逐渐提升、热导率逐渐降低、烧蚀性能明显提高。优化后的PAC复合材料具有极低的密度(0.27 g·cm -3)、高弯曲强度(8.9 MPa)、较低的热导率(0.065 W·m -1·K -1);在2000℃、30 s的中等热流烧蚀条件下,质量烧蚀率为0.0081 g·s -1、线烧蚀率为0.0204 mm·s -1。通过调控材料的纳米结构,能够有效地提升材料的力学、隔热以及烧蚀性能,满足高性能热防护应用需求。 相似文献
17.
This work allows us to determine the interfacial stresses concentrations which are the cause of the debonding phenomenon in the structures strengthened by composites fiber-reinforced plastic (FRP). This method permits to replace the classic techniques based on welding and bolting the elements of the structure that give stresses concentrations to the level of the assembly zone. The technique of reinforcement by patches in composites gives more resistance and rigidity, but it can give stresses concentrations to the edges of the reinforcement zone which can exceed the ultimate loads of the structure and cause failures. In this work, an original interfacial stress theory is developed between the structure and the composite (FRP) and has finalized, taking into account, the mechanical and thermal loads coupled with the shear lag effects. This original method carried out the terms neglected by the previous studies, such as shear lag effect of structure and composites, and thermal load coupled with the model of mechanical and fiber orientation effect. The geometrical and physical parameters taken into account play an important role in the stresses values concentration and thus the phenomenon of delamination 相似文献
19.
利用激光粒度仪对煤在层燃锅炉燃烧过程中排放的烟尘进行测定,研究了不同变质程度和粒度的煤在燃烧过程中细微颗粒物排放的规律。实验结果表明在层燃过程中,随着煤样粒度减少,细微颗粒物的排放量增加;随着煤的挥发分降低,细微颗粒物排放量减少;粘结性增大,细微颗粒物排放量减少。 相似文献
20.
A new numerical simulation method was proposed to predict the mechanical behavior of carbon fiber reinforced resin composites under low‐velocity impact load. The impact damage evolution can be characterized in the form of energy dissipation which can be calculated through the new numerical model. The evolution mechanism of delamination was analyzed through distinguishing between the normal induced delamination and tangential slip induced delamination. The drop weight tests were conducted on composite laminates with five kinds of stacking sequence. Experimental analysis was also presented in this article. The damage area and distribution was investigated through ultrasonic C‐scan. The prediction had a good agreement with the experimental results through the comparison of impact response. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44374. 相似文献
|