首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
In this paper, the performance of an automotive polyurethane adhesive was studied through adhesive joints tests. Butt joints and single lap joints were fabricated and tested at seven temperature measuring points (TMPs). It is shown that both the tensile strength and lap shear strength decrease with the increasing of temperature. Quadratic polynomial expression obtained by the least square method can represent the tensile and lap shear strength as a function of temperature very well. ?40°C, 0°C, and 90°C were selected as the most ideal TMPs for this adhesive through the comparison of the residual sums of squares of 35 fitting curves with different combination of TMPs. Scarf joints with adhesive angles of 60° and 30° were fabricated and tested at ?40°C, 0°C, and 90°C. It also showed a decrease in joint strength with the increasing temperature. Joint strength as a function of adhesive angle is presented. It was found to closely follow a linear behaviour. A three-dimensional surface, consisting of temperature, adhesive angle, and joint strength, is presented finally to facilitate the design of automotive bonding structures.  相似文献   

2.
The paper focuses on selected parameters of curing process – temperature and time. The tests aimed at evaluating the impact of short-term thermal recuring on 1050A and 2017A aluminium alloy sheet adhesive joints strength. Joints were formed with two different adhesives, the main component of which was in both cases epoxy resin Epidian 53 and two different cure agents – poliamineamide C (PAC) and triethylenetetraamine (PF) curing agents. Curing conditions – first curing time, recuring time and recuring temperature – were modified for each of the four tests conducted. For the sake of comparative analysis, adhesive joints were subjected to a single-stage cure cycle at ambient temperature. A two-stage cure cycle of both Epidian 53 compositions at 80?°C for 1 and 2?h produces a material of different mechanical properties than the same material which submits a single-stage cure cycle at ambient temperature, as well as at 60?°C for 30?min. Simultaneously, Epidian 53/PF/100:50 composition proves to produce higher joint strength after recuring than Epidian 53/PAC/100:80; the strength of a joint formed with the former composition increases up to 50% when compared with joints subjected to a single-stage cure cycle. Moreover, tests show that recuring of the adhesive joint formed with both compositions at 60?°C for 30?min does not have a considerable influence on either 1050A or 2017A aluminium adhesive joint strength.  相似文献   

3.
In this study the impact and quasi-static mechanical behaviour of single lap joints (SLJ) using a new crash resistant epoxy adhesive has been characterized as a function of temperature. Single lap adhesive joints were tested using a drop weight impact machine (impact tests) and using a universal test machine. Induction heating and nitrogen gas cooling was used in order to achieve a homogeneous distribution of temperature along the overlap of + 80 °C and ?20 °C, respectively. Adherends made of mild steel, similar to the steel used in automobile construction, were chosen in order to study the yielding effect on the strength of the SLJ. Results showed that at room temperature (RT) and low temperature (LT), failure was dictated by the adherends due to the high strength of the adhesive. At high temperature (HT), a decrease was found in the maximum load and energy absorbed by the joint due to the reduced strength of the adhesive at this temperature. The results were successfully modelled using the commercially available finite element software Abaqus®. Good correlation was found between experimental and numerical results, which allows the reduction of experimental testing.  相似文献   

4.
In this work, the double cantilever beam (DCB) test is analysed in order to evaluate the combined effect of temperature and moisture on the mode I fracture toughness of adhesives used in the automotive industry. Very few studies focus on the combined effect of temperature and moisture on the mechanical behaviour of adhesive joints. To the authors’ knowledge, the simultaneous effect of these conditions on the fracture toughness of adhesive joints has never been determined. Specimens using two different adhesives for the automotive industry were subjected to two different ageing environments (immersion in distilled water and under 75% of relative humidity). Once they were fully degraded, they were tested at three different temperatures (?40, 23 and 80 °C), which covers the range of temperature an adhesive for the automotive industry is required to withstand. The aim is to improve the long term mechanical behaviour prediction of adhesive joints. The DCB substrates were made of a high strength aluminium alloy to avoid plastic deformation during test. The substrates received a phosphoric acid anodisation to improve their long term adhesion to the adhesive. Results show that even though a phosphoric acid anodization was applied to the adherends, when the aged specimens were tested at room temperature and at 80 °C, they suffered interfacial rupture. At ?40 °C, however, cohesive rupture was observed and the fracture toughness of the aged specimens was higher.  相似文献   

5.
In the present paper, the mechanical properties of hybrid bonded bolted joints between Fiber metal laminate (FML) and stainless steel adherends are investigated using experimental tensile tests. Three and five layered FMLs were fabricated using 430 stainless steel sheets and fiberglass prepreg layers. The adherends were bonded by AD-314 resin mixed with HA-34 hardener as adhesive and steel bolt was used for the mechanical fastening. The specimens were immersed into the sea water for 30 days and degradation of the mechanical strength of the joints was studied. Thermal cycles including heating (40 °C to100 °C) and cryogenic (−100 °C to −40 °C) cycles were applied in order to study their effects on the strength of the degraded joints. The failure mode for the adhesive bond was mixed failure and that of the bolted joint was the net-tension failure. The results showed 52% strength recovery in hybrid joints subjected to heating cycles. Cryogenic cycles also caused a 50% improvement in the tensile strength of the hybrid joints. In addition, the joint stiffness and absorbed energy of the specimens were improved significantly for both heating and cryogenic cycles. Moreover, the effect of FML stacking sequence on the results was also investigated. The results revealed that the mechanical fastening failure load for 5 layered FML joint is more affected by thermal cycles in comparison with 3 layered FML joint.  相似文献   

6.
To predict the failure of adhesively bonded CFRP (Carbon Fiber Reinforced Plastics)-aluminum alloy joints applied to High Speed EMU (Electric Multiple Units) more accurately with consideration of temperature influence, a combined experimental-numerical approach is developed in this study. Bulk specimens and adhesive joints, including thick-adherend shear joints(TSJ), scarf joints(SJ) with scarf angle 30°(SJ30°), 45°(SJ45°), and 60°(SJ60°), as well as butt joints(BJ), were manufactured and tested at 23°C (room temperature, RT), 80°C (high temperature, HT) and ?40°C (low temperature, LT). Quadratic stress criteria built at different temperatures were introduced in the cohesive zone mode (CZM) to conduct a simulation analysis. Test results suggest that the effects of HT on mechanical properties of adhesive are more obvious than the effects of LT. It is also found that TSJ show the greatest improvements in failure strengths at LT due to the occurrence of cohesive failure, while SJ and BJ tend to develop fiber tears due to the presence of normal stress. Stress distributions of adhesive layer are found to be symmetrical except for the normal stress of SJ. This simulation analysis shows that the prediction accuracy is related to quadratic stress criteria applied, and that the relative errors of prediction results are less than 7.5% for engineering applications.  相似文献   

7.
The paper deals with the influence of temperature and cyclic loading on adhesion and transparency of the adhesive joint consisting of soda-lime-silica glass and polycarbonate (PC) bonded with polyurethane (PU) adhesive film. The tested joint represents critical part of transparent armored glass used in vehicles. Dynamic tension creep tests were performed at temperatures to which armored glass is commonly exposed (25, 50, 60, 70, and 80?°C). Sawtooth loading mode was performed to 650?N and the sine loading in the force range 0–1550?N. The aim of the paper was to discover conditions causing delamination of the adhesive joint and glass milky appearance during the use. Delamination of soda-lime-silica glass/PU adhesive interface occurred at 25?°C after load to 1550?N without the change of transparency. Both dynamic and static tension creep tests performed to 400?N led to plastic deformation of PU adhesive at and above 70?°C, in preference at both ends and circumference edges of adhesive joint, and thus, to loss of transparency, but extent of deformation differed. Milky maps observed after sawtooth load to 650?N at 80?°C reflected delaminated areas of highly deformed PU adhesive. Temperature of 70?°C was found out to be the critical parameter being in synergy effect with different thermal expansion of PC and PU adhesive.  相似文献   

8.
This study deals with the investigation of thermal stresses and delamination growth in scarf joints under a uniform temperature change by photoelastic measurements and a two-dimensional finite element analysis. The adherends were fabricated from aluminum plates, and an adhesive layer was modeled and fabricated from an epoxide resin plate. The adherends and the epoxide resin plate were bonded using a heat-setting and one-component-type adhesive. The adhesive was cured at 85 °C and cooled down to room temperature. The thermal stress was then generated in the scarf joint under a temperature change and measured by photoelasticity. After the scarf joints were cooled in a stepwise manner, the delamination growth, which initiates from the edge of the interface, was measured. It was found that the delamination initiates from the edge of the interface with the acute angle side and it never initiates from the edge with the obtuse angle side. When the scarf angle is 90°, i.e. in adhesive butt joints, the resistance against the delamination is minimal. The thermal stresses in the scarf joints with a thin adhesive layer were also analyzed. It was found that the thermal strength increases as the adhesive thickness decreases. The stress singularity near the edge of the interface was calculated from the stress distributions in the joints with different scarf angles. As a result, it was found that the stress singularity in the scarf joints under thermal loads is quite different from that under static tensile loads.  相似文献   

9.
Adhesively bonded lap and T joints are used extensively in the manufacture of automotive structures. In order to determine the effect of using a structural adhesive instead of spot-welding, a detailed series of tests, supported by finite element analyses, was conducted using a range of loadings. The adhesive was a toughened epoxy and the adherend was a grade of mild steel typical of that used in the manufacture of car bodyshells. The lap joints were tested in tension (which creates shear across the bondline) and three point bending. Previous studies at room temperature have shown that joint failure is dictated by adherend yielding and adhesive strain to failure. In the present study, to asses the effect of temperature that an automotive joint might experience in service, tests were carried out at ?40 and +90 °C. It is shown that the failure criterion proposed at room temperature is still valid at low and high temperatures, the failure envelope moving up and down as the temperature increases or decreases, respectively.  相似文献   

10.
In this investigation, attempts are made to modify a high‐performance polymer such as polybenzimidazole (PBI) (service temperature ranges from ?260°C to +400°C) through high‐energy radiation and low‐pressure plasma to prepare composite with the same polymer. The PBI composites are prepared using an ultrahigh temperature resistant epoxy adhesive to join the two polymer sheets. The service temperature of this adhesive ranges from ?260°C to +370°C, and in addition, this adhesive has excellent resistance to most acids, alkalis, solvents, corrosive agents, radiation, and fire, making it extremely useful for aerospace and space applications. Prior to preparing the composite, the surface of the PBI is ultrasonically cleaned by acetone followed by its modification through high‐energy radiation for 6 h in the pool of a SLOWPOKE‐2 (safe low power critical experiment) nuclear reactor, which produces a mixed field of thermal and epithermal neutrons, energetic electrons, and protons, and γ‐rays, with a dose rate of 37 kGy/h and low‐pressure plasma through 13.56 MHz RF glow discharge for 120 s at 100 W of power using nitrogen as process gas, to essentially increase the surface energy of the polymer, leading to substantial improvement of its adhesion characteristics. Prior to joining, the polymer surfaces are characterized by estimating surface energy and electron spectroscopy for chemical analysis (ESCA). To determine the joint strength, tensile lap shear tests are performed according to ASTM D 5868–95 standard. Another set of experiments is carried out by exposing the low‐pressure plasma‐modified polymer joint under the SLOWPOKE‐2 nuclear for 6 h. Considerable increase in the joint strength is observed, when the polymer surface is modified by either high‐energy radiation or low‐pressure plasma. There is further significant increase in joint strength, when the polymer surface is first modified by low‐pressure plasma followed by exposing the joint under high‐energy radiation. To simulate with spatial conditions, the joints are exposed to cryogenic (?196°C) and high temperatures (+300°C) for 100 h. Then, tensile lap shear tests are carried out to determine the effects of these environments on the joint strength. It is observed that when these polymeric joints are exposed to these climatic conditions, the joints could retain their strength of about 95% of that of joints tested under ambient conditions. Finally, to understand the behavior of ultrahigh temperature resistant epoxy adhesive bonding of PBI, the fractured surfaces of the joints are examined by scanning electron microscope. It is observed that there is considerable interfacial failure in the case of unmodified polymer‐to‐polymer joint whereas surface‐modified polymer essentially fails cohesively within the adhesive. Therefore, this high‐performance polymer composite could be highly useful for structural applications in space and aerospace. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1959–1967, 2006  相似文献   

11.
In this paper, the effect of adding graphene oxide nano-platelets (GONPs) into the adhesive layer was investigated on the creep behavior of adhesively bonded joints. The neat and GONP-reinforced adhesive joints were manufactured and tested under creep loading with different stress and temperature levels. 0.1?wt% GONPs revealed the highest improvement on the adhesive joint creep behavior amongst the studied weight percentages. Furthermore, the effect of GONPs on the creep behavior of adhesive joints was more significant at higher temperatures. It was found that adding 0.1?wt% of GONPs into the adhesive layer imposed reductions of 21%, 31% and 34% in the elastic shear strains and reductions of 24%, 31% and 37% in the creep shear strains of SLJs under testing temperatures of 30, 40 and 50?°C, respectively. The Burgers rheological model was employed for simulating the creep behavior of the neat and GONP-reinforced adhesive joints. The Burgers model parameters were obtained as functions of testing temperature, creep shear stress and GONP weight percentage using a response surface methodology. Reasonable agreement was obtained between the modeled and experimental creep behaviors of the adhesive joints.  相似文献   

12.
The lower-strength defect of inorganic phosphate adhesive had been definitely improved by self-generating multiple high-temperature resistant phases. Compared to our previous product, the best bonding performance of this novel adhesive for mullite was increased by 270%, which was close to some popular preceramic polymer-based adhesives. The apparent shear strength at room temperature was up to 33.1?MPa after calcination at 900?°C, while the high-temperature strength researched 23.3?MPa at 900?°C and maintained above 17?MPa from 700° to 1200?°C. The reinforced effect of adhesive owed to the introduction of various Cu-based intermetallics, the premature generation of Al4B2O18 at 900?°C, and the structure optimizing through the oxidization of Si and B4C. Besides, the novel adhesive displayed good resistance to thermal-shock, especially for air-cooling test. After 15 thermal cycles in air, the residual strength of 1300?°C-calcined joints was still above 13?MPa (~40%).  相似文献   

13.
Fracture surfaces of Epon 901/B-3 bonded aluminum alloy joints in the lap-shear configuration were studied using scanning electron microscopy. Major differences in the appearance of the fracture surface from those reported (8) for tensile loaded joints at 23°C are produced either by cyclic loading at 23°C or a change in test temperature to ?196°C. Fracture in tensile loaded joints at ?196°C is a brittle single step process in the opening mode in which rapid crack extension occurs throughout the joint with very little adhesive flow. Tensile fatigue fracture at 23°C is in the opening mode but crack extension is complicated by extensive adhesive flow throughout the entire joint.  相似文献   

14.
The temperature and humidity were found to be the most effective parameters in the behavior of polyurethane flexible adhesive bonded aluminum joints. In order to obtain the effect of environment on bond strength, toughness, failure displacement, joints stiffness and failure model, in this work, aluminum single-lap joints were tested under various temperatures (25, 40, 60 and 80 °C) and relative humidity (RH, 55, 65, 75, 85, 95 and 99%) using an environmental chamber. The results showed that as the humidity increased from 55 to 99%, bond strength decreased as linear function. As the temperature increased from 25 to 80 °C, the bond strength decreased as exponential function. The joints stiffness reduced gradually with the increase of temperature and humidity. The analysis of the failure section of the ageing joints showed that the humidity caused the transition of the failure model, and the increase of the temperature promoted the change of the failure model. Besides, at low humidity (55 and 65%), failure displacement decreased gradually with the increase of temperature, and at high humidity (95 and 99%), failure displacement increased. This study will help engineers design a reliable, safe and effective bonding structure. And it is conducive to solve the problem of joint strength degradation in the hygrothermal environment.  相似文献   

15.
Adhesive joints used in supersonic aircraft fuselage need to withstand low (?55°C), as well as high (200°C) temperatures. However, there are no adhesives suitable for the whole temperature range. A solution would be a joint with a combination of a low-temperature adhesive and a high-temperature adhesive, called a mixed-adhesive joint. In a bonded joint, the thermal stresses are generated essentially by the different thermal expansion properties of the adhesive and the adherends and, to a lesser extent, by the shrinkage of the adhesive produced by curing. The case of a mixed-adhesive joint is more complicated because there are two adhesives with different glass transition temperatures (T g). To determine the stress-free temperature in a mixed adhesive joint, sandwich specimens of aluminium–adhesive–CFRP (carbon-fibre-reinforced plastic) were fabricated and the thermal strains were measured with strain gauges. In a mixed adhesive joint, two stress-free temperatures were found: the stress-free temperature of the high temperature adhesive, which is its cure temperature, and the stress-free temperature of the low temperature adhesive, which is its T g.  相似文献   

16.
Si3N4 ceramic was successfully joined to itself with in-situ formed Yb-Si-Al oxynitride glass interlayer. The joints were composed of three parts: (I) Si3N4 matrix, (II) oxynitride glass interlayer in which hexagonal or fine elongated β-sialon grains and a few ball-like β-Si3N4 grains exist, and (III) diffusion zone in Si3N4 matrix containing a thin dark layer and a ~ 25?µm thick bright layer. The seam owned similar microstructure to matrix and was inosculated with the matrix as a whole. The strength of the joint tended to increase with the increase of bonding temperature and reached the value of 225?MPa, when the joints were prepared at 1600?°C for 30?min under a pressure of 1.5?MPa. The high-temperature strength remained 94.7% and 75.2% of R.T. strength when the joints were tested at 1000?°C and 1200?°C, respectively. It may be contributed to the high softening temperature of the Yb-Si-Al oxynitride glass phase formed in the seam. Even suffered to the air exposure for 10?h at 1200?°C, the residual strength of the joints was still 143?MPa, attributed to the existence of YbAG phase.  相似文献   

17.
The aim of the research was to investigate a possibility to use active rubber powder (ARP) from a process of tyres recyclation in an area of a filler into a reactoplastics matrix applied in structural adhesive bonds. This study focuses on an analysis of a tensile strength, a shear impact strength and a hardness of the composite mixture itself and further on the interaction with an adhesive bonded material, i.e. it evaluates an influence of different ratio of ARP on the adhesive bond strength. Effects of the cyclic degradation environment combining the decreased temperature ?40 °C and the increased temperature 90 °C at the simultaneous acting of the increased moisture up 90% is a part of the research. The tensile strength and the hardness were decreased by adding ARP. The experiment results proved a positive effect of ARP in the area of adhesive bonds exposed to the cyclic degradation at increased and decreased temperatures. Elastic ARP is able to absorb an inner tension in the layer of the adhesive bond.  相似文献   

18.
The long term static strength of adhesive joints is analyzed in terms of a modified Prot method and sustained load tests. Data from the failure times under different loading rates are used to predict the static stress that an adhesive joint will withstand for an infinite time, i.e., the endurance limit. Despite theoretical shortcomings, the method is found to give reasonable estimates of the endurance limit as determined by standard sustained load tests. The ratio of the short term lap shear strength to the endurance limit is found to be independent of adhesive modulus, temperature, and sample geometry. For engineering calculations on lap shear structural adhesive joints under a static load (at 23°C, 50% R.H.), the endurance limit may be assumed to be equal to 0.25 of the short term strength.  相似文献   

19.
The failure behavior of reinforced-adhesively single-lap joints was investigated experimentally and numerically. The reinforced adhesive was produced by mixing waste composite particles and an epoxy-based commercial adhesive. The single-lap joint was prepared with an adhesive and unidirectional fiber glass/epoxy composite plates with a (0°/90°)3 stacking sequence. Three types of adhesive were used: an un-reinforced adhesive (ADH), an adhesive mixed with glass fiber-reinforced epoxy resin composite plate particles (GFRC), and an adhesive mixed with carbon fiber-reinforced epoxy resin composite plate particles (CFRC). The adhesive thickness (ta) and overlap length (lap) were 0.4, 0.8, 1.2, and 1.6 mm and 10, 20, 30, and 40 mm, respectively. Progressive failure analysis was performed with the ANSYS? 11.0 finite element program using ANSYS? parametric design language (APDL) code. In the numerical study, the failure loads of the composite and the adhesive were determined with the Hashin failure criteria and the Tresca failure criteria, respectively. The difference between the experimental and numerical studies ranged from 2% to 10%. The failure load of reinforced-adhesively single-lap joints was 1.3–22.8% higher than that of the un-reinforced adhesive.  相似文献   

20.
Exposure to environmental factors, especially moisture, is recognized as the major cause of degradation of adhesive joints. In this work, complementing a previous study on exposure to moisture, single lap joints were subjected to immersion in water, up to five weeks, at room temperature and 50 °C. The material of the adherends was mild steel, and the adhesive was a bi-component epoxy. The specimens were fabricated using the open-face technique. Mechanical testing at the end of the relevant period of immersion showed an initial loss of ultimate load, after one week at 50 °C or two at room temperature; then, the strength remained practically constant over the remaining time. The loss was more accentuated after immersion at 50 °C, about 70%, than at room temperature, about 30%. Also a reduction in stiffness of the joints was measured, again dramatic (about 70%) after immersion at 50 °C, moderate (about 10%) after room temperature immersion. Optical examination, performed before closing the open-face specimens and after mechanical testing, showed that the major damage mechanism was the formation of blisters filled by liquid at the primary adherend/primary adhesive interface, causing the failure mode to change from cohesive to interfacial.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号