首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 15 毫秒
1.
To determine the equilibrium constant for ferroselite (FeSe2(cr)) dissolution reaction, FeSe2(cr) solubility experiments were performed at 298 ± 1 K from both the over- and under-saturation directions with Fe–Se precipitates that were aged at 348 K. X-ray diffraction (XRD) analysis detected only FeSe2(cr) as the Se solid phase in the equilibrated precipitates. The Eh values of the equilibrated suspensions ranged from ?188.6 to ?4.9 mV vs. standard hydrogen electrode (SHE) and the pH values ranged from 6.00 to 8.76. Based on the available thermodynamic data, Se42? and Fe2+ are thermodynamically stable within this Eh–pH range. Agreement between the solubility data obtained from the over- and under-saturation directions lends credence to the attainment of equilibrium at 298 ± 1 K. The thermodynamic interpretations using the specific ion interaction theory (SIT) model showed that Eh values and the concentrations of Se and Fe are well represented by the 2FeSe2(cr) solubility reaction (2FeSe2(cr) ? 2Fe2+ + Se42? + 2e?) with log10K = ?17.09 ± 0.28. The obtained log10K value falls within the uncertainty limits of the log10K value calculated from the available thermodynamic data.  相似文献   

2.
ABSTRACT

NO2 and NO generated during a boiling and drying accident, which affects the release of volatilized radioactive Ru into the atmosphere, were examined using various samples including simulated high-level liquid waste and a thermogravimetric analyzer. NO2 and NO in the gas flowing out of the analyzer were measured separately using a NOx analyzer equipped with NO2 and NO sensors. The samples were heated to 600°C at constant heating rates of mainly 0.2 and 1°C min?1 that was adopted taking into account the decay heat of high-level liquid waste. It was found that under 180°C some nitrates in the liquid waste mainly separated their nitrate groups as HNO3 without generating NOx (a mixture of NO and NO2) and above 300°C the residual HNO3 in the waste participated in thermal decomposition generating NOx. The generation rates of NO2 and NO were obtained as a function of time using Arrhenius type equations, and the O2 rate was derived from these equations using the stoichiometry of the reactions that generate NO2, NO, and O2.  相似文献   

3.
Ruthenium is a major fission product element among the platinum group elements (PGEs) in high-level liquid waste (HLLW). Ru tetra-oxide, RuO4, has high vapor pressure, which is high enough to be run off from its solution even at room temperature. Electrochemical oxidation method, to oxidize nitrosyl ruthenium to the tetra-oxide and then to remove ruthenium from liquid phase to gas phase, was studied to separate Ru from the HLLW. The advantage of this method requires neither additional reagents nor adjustment its valency before the oxidation and disadvantage is necessity of long time for oxidation. In order to improve oxidation rate, we carried out the experiments to clarify the effects following fundamental conditions to the electrochemical oxidation, which are (a) electrolyte temperature, (b) presence of promoter elements, (c) evaporation or reflux of condensed phase, and (d) using or not using of diaphragm at counter electrode. We found the fast oxidation conditions as follows: (1) higher temperature; 95°C, (2) Ce coexistence; 3000 ppm; and (3) usage of a diaphragm for counter electrode. However, evaporation or reflux conditions did not directly affect the electrochemical oxidation efficiency.  相似文献   

4.
To investigate what happened in reality during the Fukushima Daiichi Nuclear Power Plant accident, the phenomena within reactor pressure vessel and the discussion of ties with the environmental monitoring measurement are very important. However, the previous study that treats phenomena of the both has not necessarily advanced up to the present time. The source terms predicted by simulation codes such as MELCOR has not yet been consistent with the reverse estimation by WSPEEDI code using environmental measurement data. This study investigated 131I and 137Cs release behaviors during the late phase of the accident to contribute to such examination using the 131I/137Cs ratio of the new source terms predicted by Katata. The 131I release by the gas–liquid partition from the contaminated water in the 1F2 and 1F3 reactor buildings which was pointed out in the previous study was reevaluated using the new source terms. In addition, paying attention to the similarity of the core conditions between the Fukushima accident and the Phébus FPT3 experiment using the B4C control rods, the release of organic iodine (CH3I) during the 1F3 suppression pool venting, formation of CsBO2 and its release behavior were examined which have not yet been sufficiently studied so far.  相似文献   

5.
79Se and 135Cs are long-lived fission products and are found in high-level radioactive waste (HLW). The estimation of their inventories in HLW is essential for the safety assessment of geological disposal, owing to their mobility in the strata. In this study, the amounts of 79Se and 135Cs in a spent nuclear fuel solution were measured. About 5 g of irradiated UO2 fuel discharged from a commercial Japanese pressurized water reactor (PWR) with a burn-up of 44.9 GWd/t was sampled and dissolved with 50mL of 4M nitric acid in a hot cell for 2 h. After Se and Cs were chemically separated, the amounts of 79Se and 135Cs in the spent nuclear fuel solution were measured by inductively coupled plasma quadrupole mass spectrometry (ICP-QMS). The amounts of 79Se and 135Cs were 5:2 ± 1:5 and 447 ± 40 g/MTU, respectively. The results presented in this study, which are the first postirradiation experimental data in Japan, showed good agreement with those obtained by the ORIGEN2 code using the data library of JENDL-3.3.  相似文献   

6.
The importance of 10Be in different applications of accelerator mass spectrometry (AMS) is well-known. In this context the half-life of 10Be has a crucial impact, and an accurate and precise determination of the half-life is a prerequisite for many of the applications of 10Be in cosmic-ray and earth science research. Recently, the value of the 10Be half-life has been the centre of much debate. In order to overcome uncertainties inherent in previous determinations, we introduced a new method of high accuracy and precision. An aliquot of our highly enriched 10Be master solution was serially diluted with increasing well-known masses of 9Be. We then determined the initial 10Be concentration by least square fit to the series of measurements of the resultant 10Be/9Be ratio. In order to minimize uncertainties because of mass bias which plague other low-energy mass spectrometric methods, we used for the first time Heavy-Ion Elastic Recoil Detection (HI-ERD) for the determination of the 10Be/9Be isotopic ratios, a technique which does not suffer from difficult to control mass fractionation. The specific activity of the master solution was measured by means of accurate liquid scintillation counting (LSC). The resultant combination of the 10Be concentration and activity yields a 10Be half-life of T1/2 = 1.388 ± 0.018 (1 s, 1.30%) Ma. In a parallel but independent study (Chmeleff et al. [11]), found a value of 1.386 ± 0.016 (1.15%) Ma. Our recommended weighted mean and mean standard error for the new value for 10Be half-life based on these two independent measurements is 1.387 ± 0.012 (0.87%) Ma.  相似文献   

7.
An atom probe field ion microscopy characterization has been performed to determine the copper matrix concentration in a submerged arc beltline weld of the Midland Unit 1 pressurized water reactor after four conditions: unirradiated, unirradiated and annealed for 168 h at 454°C, neutron-irradiated in a test reactor to a fluence of 1.1×1023 n m−2 (E>1 MeV) at a temperature of 288°C, and neutron-irradiated and annealed for 168 h at 454°C. Atom probe analysis of the unirradiated material revealed a substantial depletion of the copper in the matrix to 0.119±0.007 at.% Cu from the bulk value of between 0.18 and 0.28 at.% Cu. Annealing the unirradiated material produced intragranular copper-enriched precipitates and reduced the matrix copper level by 25% to 0.088±0.012 at.% Cu. Neutron irradiation also produced copper-enriched precipitates and reduced the matrix copper level by almost 50% over the stress relieved material to 0.058±0.008 at.% Cu. Annealing the neutron-irradiated material reduced the matrix copper level further to 0.050±0.010 at.% Cu. These results indicate that the annealing treatment coarsens the copper-enriched precipitates produced during neutron irradiation with a slight decrease in the matrix copper content.  相似文献   

8.
In this paper, the frictional pressure drop in an isothermal liquid metal-gas two-phase flow through a rectangular channel with large width-to-height ratio is treated semiempirically for a NaK-N2 two-phase flow system.

The frictional pressure drop in the two-phase flow is compared with the following two reference values :

1. The frictional pressure drop in the liquid flowing alone in single phase with the same velocity as that of the liquid in the two-phase mixture.

2. The frictional pressure drop in the liquid flowing alone in single phase with the same mass flow rate as that of the liquid in the two-phase mixture.

The comparison with the former reference value is necessary for the prediction of friction loss in a liquid metal MHD generator channel whose medium would be two-phase mixture.

The semiempirical analysis was performed assuming the two-phase mixture to be a continuous medium with its properties, e.g. viscosity and density, defined by void fraction and the velocity determined by the total mass flow rate.

In the region of low slip and density ratio ρgl the frictional pressure drop in the two-phase flow appeared to be smaller than that due to the liquid flowing alone with the same velocity as that of the liquid in the two-phase flow.

The experiments have been undertaken with the NaK-N2 two-phase mixture flowing through a rectangular channel (4 × 60 mm2).

Data were taken over the following parameter range:

NaK velocity: 5~30 m/sec, Void fraction: 0~70%

Density ratio: 0.006~0.013, Quality: 0.07~1.10%.  相似文献   

9.
Interaction between metallic fuel and steel structures is one of the predominant phenomena in the progress of core disruptive accidents of Sodium-cooled fast reactor. In this study, the atomic diffusion across the interface between Pu and Fe was investigated by using molecular dynamics. The simulation was performed by using Modified Embedded Atom Method (MEAM). The interactions between plutonium and iron atoms were calculated by using the newly developed potential model determined so as to reproduce the material properties of PuFe2 and Pu6Fe. The material properties of the compounds predicted with the developed potential were in good agreement with the referenced data. The dissolution or melting at the interface between solid Fe and solid or liquid Pu were simulated by contacting semi-infinite slabs (or liquid layer) of them. Dissolution was observed for all the tested temperature conditions from 800 K up to 1700 K. The melting at the interface was also observed on the interface between solid Fe and PuFe2 slabs at the temperature approximately 100 K below the melting temperature of PuFe2 obtained based on the present model.  相似文献   

10.
The low-frequency corrosion fatigue (CF) crack growth behaviour of different low-alloy reactor pressure vessel steels was characterized under simulated boiling water reactor conditions by cyclic fatigue tests with pre-cracked fracture mechanics specimens. The experiments were performed in the temperature range of 240-288 °C with different loading parameters at different electrochemical corrosion potentials (ECPs). Modern high-temperature water loops, on-line crack growth monitoring (DCPD) and fractographical analysis by SEM were used to quantify the cracking response. In this paper the effect of ECP on the CF crack growth behaviour is discussed and compared with the crack growth model of General Electric (GE). The ECP mainly affected the transition from fast (‘high-sulphur’) to slow (‘low-sulphur’) CF crack growth, which appeared as critical frequencies νcrit = fK, R, ECP) and ΔK-thresholds ΔKEAC = f(ν, R, ECP) in the cycle-based form and as a critical air fatigue crack growth rate da/dtAir,crit in the time-domain form. The critical crack growth rates, frequencies, and ΔKEAC-thresholds were shifted to lower values with increasing ECP. The CF crack growth rates of all materials were conservatively covered by the ‘high-sulphur’ CF line of the GE-model for all investigated temperatures and frequencies. Under most system conditions, the model seems to reasonably well predict the experimentally observed parameter trends. Only under highly oxidizing conditions (ECP ? 0 mVSHE) and slow strain rates/low loading frequencies the GE-model does not conservatively cover the experimentally gathered crack growth rate data. Based on the GE-model and the observed cracking behaviour a simple time-domain superposition-model could be used to develop improved reference CF crack growth curves for codes.  相似文献   

11.
Modeling of spurious activations in safety instrumented systems has been studied for over a decade. The spurious activation of a plant protection system in nuclear power plants (NPPs) leads to increased electricity generation cost. An in-depth view on spurious activation of digital plant protection systems of NPPs for human errors in maintenance tasks is presented in this paper. A new model which considers human errors in maintenance and periodic tests to predict component failure rates is presented. The model has been applied to OPR-1000 reactor protection system for quantification of spurious trip frequency by fault-tree analysis. The major causes of spurious activation in a nuclear reactor protection system are identified. A set of case studies has been performed with the variation of magnitudes of human errors probability and maintenance strategies, in which, the human errors in maintenance are found to significantly influence reactor spurious trip frequency. This study is expected to provide a useful mean to designers as well as maintainers of the digital reactor protection system to improve plant availability and safety.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号