首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Indoor and outdoor ultrafine particles (UFPs) (0.01 to greater than 1 microm) concentration levels were examined in the area of Athens during cold period of 2003 and 2004. Seven primary schools, located in areas with different characteristics of urbanization and traffic density, as well as a typical suburban residence, were monitored. Moreover, in-vehicle concentration levels, while driving along major avenues and in the heavy-trafficked centre of Athens, were measured (mean route duration: 45 min). UFPs number concentration was monitored by condensation particle counter (model CPC 3007), with a logging time interval of 1 min. The highest mean indoor concentrations were observed in a small carpet-covered library and a teachers' office (8-hour mean equal to 52.6x10(3) particles/cm(3) and 50.2x10(3) particles/cm(3), respectively), at the same school unit. The highest outdoor concentrations (8-hour mean equal to 36.9x10(3) particles/cm(3) and 38.8x10(3) particles/cm(3)) were measured at two schools, both affected by heavy traffic. Finally, the highest in-vehicle concentrations (148.0x10(3)-173.0x10(3) particles/cm(3)) were measured in central commercial areas of Athens during, on average, 55 min drives. Indoor-to-outdoor concentration (I/O) ratios were below 1.00 at all sites. The largest ratio (0.88) was observed in the residence, during a day when there was cleaning activity in the room monitored. Outdoor concentrations diurnal cycles, both outside the schools and the residence, were closely related to traffic. Indoor concentrations inside schools were relatively stable in classrooms. Nevertheless, number concentrations exhibited variability when there were significant changes in room occupancy. Diurnal variation of indoor concentrations at the residence followed the respective outdoor one with a delay of 1 h or less, in the absence of strong indoor sources, indicating the major contribution of outdoor UFPs to the indoor concentration levels. The present work is the first effort to examine UFPs indoor and outdoor concentration levels in the area of Athens. The obtained concentration data give an insight on the concentration levels to which children may be exposed. They may be also very useful in epidemiological studies, in order to estimate children total personal exposure though the calculation of exposures received in different microenvironments. This kind of studies may contribute to the design of effective policies and mitigation measures for the protection of public health.  相似文献   

2.
The concentration of ultrafine particles (0.01 to greater than 1 microm) was measured in some rural and urban areas of Sweden and Denmark. The instruments used are handheld real-time condensation particle counters, models CPC 3007 and P-Trak 8525, both manufactured by TSI. Field measurements in Sweden were conducted in a few residential and office buildings, while in Denmark the measurement sites comprised two office buildings, one of them located in a rural area. The concentration of UFPs was measured simultaneously indoors and outdoors with condensation particle counters. The results revealed that the outdoor-generated particle levels were major contributors to the indoor particle number concentration in the studied buildings when no strong internal source was present. The results showed that in office buildings, the UFP concentrations indoors were typically lower and correlated fairly well to the number concentration outdoors. The determined indoor-outdoor ratios varied between 0.5 and 0.8. The indoor levels of UFPs in offices where smoking is allowed was sometimes recorded higher than outdoor levels, as in one of the Danish offices. In residential buildings, the indoor number concentration was strongly influenced by several indoor activities, e.g., cooking and candle burning. In the presence of significant indoor sources, the indoor/outdoor (IO) ratio exceeded unity. The magnitude of UFP concentrations was greater in the large city of Copenhagen compared to the medium-size city of Gothenburg and lowest at more rural sites.  相似文献   

3.
Fine particle number concentration (D(p)>10 nm, cm(-3)), mass concentrations (approximation of PM(2.5), microg m(-3)) and indoor/outdoor number concentration ratio (I/O) measurements have been conducted for the first time in 11 urban households in India, 2002. The results indicate remarkable high indoor number and mass concentrations and I/O number concentration ratios caused by cooking. Besides cooking stoves that used liquefied petroleum gas (LPG) or kerosene as the main fuel, high indoor concentrations can be explained by poor ventilation systems. Particle number concentrations of more than 300,000 cm(-3) and mass concentrations of more than 1000 microg m(-3) were detected in some cases. When the number and mass concentrations during cooking times were statistically compared, a correlation coefficient r>0.50 was observed in 63% of the households. Some households used other fuels like wood and dung cakes along with the main fuel, but also other living activities influenced the concentrations. In some areas, outdoor combustion processes had a negative impact on indoor air quality. The maximum concentrations observed in most cases were due to indoor combustion sources. Reduction of exposure risk and health effects caused by poor indoor air in urban Indian households is possible by improving indoor ventilation and reducing penetration of outdoor particles.  相似文献   

4.
The aim of this work was to assess ultrafine particles (UFP) number concentrations in different microenvironments of Portuguese preschools and to estimate the respective exposure doses of UFP for 3–5‐year‐old children (in comparison with adults). UFP were sampled both indoors and outdoors in two urban (US1, US2) and one rural (RS1) preschool located in north of Portugal for 31 days. Total levels of indoor UFP were significantly higher at the urban preschools (mean of 1.82 × 104 and 1.32 × 104 particles/cm3 at US1 an US2, respectively) than at the rural one (1.15 × 104 particles/cm3). Canteens were the indoor microenvironment with the highest UFP (mean of 5.17 × 104, 3.28 × 104, and 4.09 × 104 particles/cm3 at US1, US2, and RS1), whereas the lowest concentrations were observed in classrooms (9.31 × 103, 11.3 × 103, and 7.14 × 103 particles/cm3 at US1, US2, and RS1). Mean indoor/outdoor ratios (I/O) of UFP at three preschools were lower than 1 (0.54–0.93), indicating that outdoor emissions significantly contributed to UFP indoors. Significant correlations were obtained between temperature, wind speed, relative humidity, solar radiation, and ambient UFP number concentrations. The estimated exposure doses were higher in children attending urban preschools; 3–5‐year‐old children were exposed to 4–6 times higher UFP doses than adults with similar daily schedules.  相似文献   

5.
The objective of this study was to quantify the influence of ventilation systems on indoor particle concentrations in residential buildings. Fifteen occupied, single‐family apartments were selected from three sites. The three sites have three different ventilation systems: unbalanced mechanical ventilation, balanced mechanical ventilation, and natural ventilation. Field measurements were conducted between April and June 2012, when outdoor air temperatures were comfortable. Number concentrations of particles, PM2.5 and CO2, were continuously measured both outdoors and indoors. In the apartments with natural ventilation, I/O ratios of particle number concentrations ranged from 0.56 to 0.72 for submicron particles, and from 0.25 to 0.60 for particles larger than 1.0 μm. The daily average indoor particle concentration decreased to 50% below the outdoor level for submicron particles and 25% below the outdoor level for fine particles, when the apartments were mechanically ventilated. The two mechanical ventilation systems reduced the I/O ratios by 26% for submicron particles and 65% for fine particles compared with the natural ventilation. These results showed that mechanical ventilation can reduce exposure to outdoor particles in residential buildings.  相似文献   

6.
Relationship between outdoor and indoor air quality in eight French schools   总被引:1,自引:0,他引:1  
In the frame of the French national research program PRIMEQUAL (inter-ministry program for better air quality in urban environments), measurements of outdoor and indoor pollution have been carried out in eight schools in La Rochelle (France) and its suburbs. The buildings were naturally ventilated by opening the windows, or mechanically ventilated, and showed various air permeabilities. Ozone, nitrogen oxides (NO and NO(2)), and airborne particle (particle counts within 15 size intervals ranging from 0.3 to 15 mum) concentrations were continuously monitored indoors and outdoors for two 2-week periods. The indoor humidity, temperature, CO(2) concentration (an indicator of occupancy), window openings and building permeability were also measured. The temporal profiles of indoor and outdoor concentrations show ozone and nitrogen oxides behave differently: NO and NO(2) indoor/outdoor concentration ratios (I/O) were found to vary in a range from 0.5 to 1, and from 0.88 to 1, respectively, but no correlation with building permeability was observed. On the contrary, I/O ratios of ozone vary in a range from 0 to 0.45 and seem to be strongly influenced by the building air-tightness: the more airtight the building envelope, the lower the ratio. Occupancy, through re-suspension of previously deposited particles and possible particle generation, strongly influences the indoor concentration level of airborne particles. However, this influence decreases with particle size, reflecting the way deposition velocities vary as a function of size. The influence of particle size on deposition and penetration across the building envelope is also discussed by analyzing the I/O ratios measured when the buildings were unoccupied, by comparing the indoor concentrations measured when the buildings were occupied and when they were not (O/U ratios), and by referring to previously published studies focussing on this topic. Except one case, I/O were found to vary in the range from 0.03 to 1.79. All O/U are greater than one and increase up to 100 with particle size. PRACTICAL IMPLICATIONS: Assessing children's total exposure requires the knowledge of outdoor and indoor air contaminant concentrations. The study presented here provides data on compared outdoor and indoor concentration levels in school buildings, as well as information on the parameters influencing the relationship between outdoor and indoor air quality. It may be used as a basis for estimating indoor concentrations from outdoor concentrations data, or as a first step in designing buildings sheltering children against atmospheric pollution.  相似文献   

7.
Human exposures to ultrafine particles (UFP) are poorly characterized given the potential associated health risks. Residences are important sites of exposure. To characterize residential exposures to UFP in some circumstances and to investigate governing factors, seven single-family houses in California were studied during 2007-2009. During multiday periods, time-resolved particle number concentrations were monitored indoors and outdoors and information was acquired concerning occupancy, source-related activities, and building operation. On average, occupants were home for 70% of their time. The geometric mean time-average residential exposure concentration for 21 study subjects was 14,500 particles per cm(3) (GSD = 1.8; arithmetic mean ± standard deviation = 17,000 ± 10,300 particles per cm(3)). The average contribution to residential exposures from indoor episodic sources was 150% of the contribution from particles of outdoor origin. Unvented natural-gas pilot lights contributed up to 19% to exposure for the two households where present. Episodic indoor source activities, most notably cooking, caused the highest peak exposures and most of the variation in exposure among houses. Owing to the importance of indoor sources and variations in the infiltration factor, residential exposure to UFP cannot be characterized by ambient measurements alone. PRACTICAL IMPLICATIONS: Indoor and outdoor sources each contribute to residential ultrafine particle (UFP) concentrations and exposures. Under the conditions investigated, peak exposure concentrations indoors were associated with cooking, using candles, or the use of a furnace. Active particle removal systems can mitigate exposure by reducing the persistence of particles indoors. Eliminating the use of unvented gas pilot lights on cooking appliances could also be beneficial. The study results indicate that characterization of human exposure to UFP, an air pollutant of emerging public health concern, cannot be accomplished without a good understanding of conditions inside residences.  相似文献   

8.
Potential health risks may result from environmental exposure to ultrafine particles (UFP), i.e., those smaller than 0.1 μm in diameter. One important exposure setting that has received relatively little attention is school classrooms. We made time-resolved, continuous measurements of particle number (PN) concentrations for 2-4 school days per site (18 days total) inside and outside of six classrooms in northern California during normal occupancy and use. Additional time-resolved information was gathered on ventilation conditions, occupancy, and classroom activity. Across the six classrooms, average indoor PN concentrations when students were present were 5200-16,500/cm(3) (overall average 10,800/cm(3)); corresponding outdoor concentrations were 9000-26,000/cm(3) (overall average 18,100/cm(3)). Average indoor levels were higher when classrooms were occupied than when they were unoccupied because of higher outdoor concentrations and higher ventilation rates during occupancy. In these classrooms, PN exposures appear to be primarily attributable to outdoor sources. Indoor emission sources (candle use, cooking on an electric griddle, use of a heater, use of terpene-containing cleaning products) were seen to affect indoor PN concentrations only in a few instances. The daily-integrated exposure of students in these six classrooms averaged 52,000/cm(3) h/day for the 18 days monitored. PRACTICAL IMPLICATIONS: This study provides data and insight concerning the UFP exposure levels children may encounter within classrooms and the factors that most significantly affect these levels in an urban area in northern California. This information can serve as a basis to guide further study of children's UFP exposure and the potential associated health risks.  相似文献   

9.
对典型办公室内的粉尘颗粒分布特征及室内外颗粒浓度比值进行了实验研究,结果表明,室内外的粉尘以小颗粒为主,1.0~3.0μm粒径的颗粒分别占室内、外总悬浮颗粒物TSP质量的46.70%和45.06%;所有测试房间室内外TSP的I/O比值为0.61~0.72,PM10的I/O比值为0.64~0.74;I/O比值随粒径的增大而减小,变化范围为0.406~0.995,但与纯自然通风条件下不同,变化趋势为较小粒径时下降迅速,之后趋于平缓。  相似文献   

10.
Assessment of indoor air quality in typical classrooms is vital to students’ health and their performance. The present study was designed to monitor indoor and outdoor size-resolved particle concentrations in a naturally ventilated classroom and investigate factors influencing their levels and relationships. The experiments were performed, at normal ventilation condition with doors and windows opened, on the top floor of a public school building near a busy commercial area of Chiang Mai, Thailand. The particle number concentrations were measured using an optical counter with four size intervals between 0.3 and 5.0 μm. The dataset was collected during weekdays and weekends with a 24 h sampling period over November and December 2005. It was observed that the median indoor particle number concentrations during daytime for 0.3–0.5, 0.5–1.0, 1.0–2.5, and 2.5–5.0 μm size intervals were about 1.6×108, 1.7×107, 1.2×106, and 4.1×105 particles/m3, respectively. It was also found that concentrations at weekends were slightly higher those measured on weekdays, and at night, appeared to be higher than daytime. Indoor particles were observed to exhibit similar temporal variation pattern with outdoor particles. Results suggested that a significant contribution to indoor particles was from penetration of outdoor particles, whereas indoor sources generated from occupant activity did not show strong evidence. High outdoor particle loading and high air exchange rate were thought to be predominant causes. Ratios of indoor-to-outdoor (I/O) particle concentrations varied in a relatively narrow range from 0.69 to 0.88 with average values well below 1. The I/O ratios were in the range from 0.74 to 0.88 for submicrometer particles and from 0.69 to 0.80 for supermicrometer particles.  相似文献   

11.
This study presents for the first time comprehensive measurements of the particle number size distribution (10 nm to 10 μm) together with next-generation sequencing analysis of airborne bacteria inside a dental clinic. A substantial enrichment of the indoor environment with new particles in all size classes was identified by both activities to background and indoor/outdoor (I/O) ratios. Grinding and drilling were the principal dental activities to produce new particles in the air, closely followed by polishing. Illumina MiSeq sequencing of 16S rRNA of bioaerosol collected indoors revealed the presence of 86 bacterial genera, 26 of them previously characterized as potential human pathogens. Bacterial species richness and concentration determined both by qPCR, and culture-dependent analysis were significantly higher in the treatment room. Bacterial load of the treatment room impacted in the nearby waiting room where no dental procedures took place. I/O ratio of bacterial concentration in the treatment room followed the fluctuation of I/O ratio of airborne particles in the biology-relevant size classes of 1–2.5, 2.5–5, and 5–10 μm. Exposure analysis revealed increased inhaled number of particles and microorganisms during dental procedures. These findings provide a detailed insight on airborne particles of both biotic and abiotic origin in a dental clinic.  相似文献   

12.
对上海市某住宅建筑室内外PM10、PM2.5、PM1的浓度进行了测量,研究了最小通风量(外门窗关闭)条件下3种天气时颗粒浓度随时间变化的规律以及相关性,分析了颗粒物浓度与环境温湿度参数之间的关系。研究结果显示,测试期间,室内外空气中细颗粒(PM 2.5)占可吸入颗粒(PM 10)浓度比例分别达65%和87%以上;无明显室内源时,I/O比值小于1且随粒径减小而减小;室内外颗粒浓度相关性与粒径大小有关系,PM1、PM2.5的浓度相关性大于PM10。研究还表明,颗粒物浓度的关联性与天气状况有关系,多云、雨天和阴天时浓度关联性有显著差别;颗粒物的浓度受到室内外温湿度的影响,且受天气状况影响而呈现复杂性。  相似文献   

13.
Children in preschools were studied as an exceptionally vulnerable group to lung diseases due to their immature immune system. Few data are available in the literature addressing the exposure of children in preschools to ultrafine (>10 nm) particles. Exposure of children to fine, ultrafine (10 nm–1 µm) particles and black carbon particles present inside and near two preschools in Nur-Sultan, Kazakhstan, during Fall 2019 was investigated. For Preschool I, the average daily (6 h) indoor (outdoor) PM1, PM2.5, and PM10 concentrations over three-week measurements were 15.0 (SD 12.5) µg/m3, 34.6 (SD 35.1) µg/m3, and 47.2 (SD 45.2) µg/m3, respectively. Average indoor UFP concentrations (>10.0 nm) including candle burning events were 5.20 × 103 (SD 8.80 × 103) particles/cm3, with the background UFP concentration to be 3.30 × 103 (SD 1.80 × 103) particles/cm3. In Preschool II, the average UFP concentration (>30.0 nm) in the morning and afternoon was 3.94 × 103 (SD 5.34 × 102) and 3.36 × 103 (SD 1.90 × 103) particles/cm3, respectively. Indoor black carbon (BC) concentrations were correlated with the outdoor smoking activity. The major sources of the indoor particles in the preschools were dust resuspension, candle burning, and infiltrated outdoor particles.  相似文献   

14.
Airborne ultrafine particles (UFP) have been related to adverse health effects, but exposure in vulnerable population groups such as children is still not well understood. We aim to review the scientific literature regarding personal exposure to UFP in different microenvironments in populations until 18 years of age. The bibliographical search was carried out in July 2019 using the online database PubMed and was completed with references in articles found in the search. We selected the studies that used continuous counters and measured UFP levels in both specific microenvironment (houses, schools, transport, etc) and personal exposure. Finally, 32 studies fulfilled the criteria: of these, 10 analyzed personal exposure and 22 examined UFP levels in the microenvironment (especially in schools or nurseries (18/22)) and five in various microenvironments (including dwellings and means of transport, where exposure levels were higher). The characteristics of the microenvironments with the greatest levels of UFP were being close to heavy traffic or near cooking and cleaning activities. This review revealed the wide differences in exposure assessment methodologies that could lead to a lack of uniform and comparable information about the real UFP exposure in children.  相似文献   

15.
M. Zaatari  J. Siegel 《Indoor air》2014,24(4):350-361
Particles in retail environments can have consequences for the occupational exposures of retail workers and customers, as well as the energy costs associated with ventilation and filtration. Little is known about particle characteristics in retail environments. We measured indoor and outdoor mass concentrations of PM10 and PM2.5, number concentrations of submicron particles (0.02–1 μm), size‐resolved 0.3–10 μm particles, as well as ventilation rates in 14 retail stores during 24 site visits in Pennsylvania and Texas. Overall, the results were generally suggestive of relatively clean environments when compared to investigations of other building types and ambient/occupational regulatory limits. PM10 and PM2.5 concentrations (mean ± s.d.) were 20 ± 14 and 11 ± 10 μg/m3, respectively, with indoor‐to‐outdoor ratios of 1.0 ± 0.7 and 0.88 ± 1.0. Mean submicron particle concentrations were 7220 ± 7500 particles/cm3 with an indoor‐to‐outdoor ratio of 1.18 ± 1.30. The median contribution to PM10 and PM2.5 concentrations from indoor sources (vs. outdoors) was 83% and 53%, respectively. There were no significant correlations between measured ventilation rates and particle concentrations of any size. When examining options to lower PM2.5 concentrations below regulatory limits, the required changes to ventilation and filtration efficiency were site specific and depended on the indoor and outdoor concentration, emission rate, and infiltration level.  相似文献   

16.
Although almost all epidemiological studies of smaller airborne particles only consider outdoor concentrations, people in Central Europe actually spend most of their time indoors. Yet indoor pollutants such as organic gases, allergens and dust are known to play a prominent role, often affecting human health more than outdoor ones. The aim of this study was to ascertain how the indoor particle size distributions of submicron and ultrafine particles correlate with the outdoor concentrations in the absence of significant indoor sources. A typical indoor particle size distribution pattern has one or two modes. In the absence of significant indoor activities such as smoking, cooking etc., outdoor particles were found to be a very important source of indoor particles. The study shows that in the absence of significant indoor sources, the number of indoor concentrations of particles in this size range are clearly lower than the outdoor concentrations. This difference is greater, the higher the number of outdoor concentrations. However, the drop in concentration is not uniform, with the decrease in concentration of smaller particles exceeding that of larger ones. By contrast, the findings with larger particle sizes (diameter > 1 microm) exhibit rather linear concentration decreases. The non-uniform drop in the number of concentrations from outdoors to indoors in our measurements considering smaller particles ( >0.01 microm) is accompanied by a shift of the concentration maxima to larger particle diameters.  相似文献   

17.
Ozone concentrations were measured in indoor and outdoor residential air during the summer of 1992. Six homes located in a New Jersey suburban area were chosen for analysis, and each home was monitored for 6 days under different ventilation and indoor combustion conditions. The 5-hour average ozone concentration outdoors over the monitoring period was 95 ± 36 ppbv. One third of the days exceeded the National Ambient Air Quality Standard (NAAQS), one-hour maximum concentration of 120 ppb. The mean indoor to outdoor (I/O) ratios of ozone concentration ranged from 0.22 ± 0.09 to 0.62 ± 0.11, depending upon ventilation rate and indoor gas combustion. The presence of indoor gas combustion can significantly decrease the I/O ratio. Because of the great amount of time that people spend indoors, the indoor residential exposures were estimated to account for 57% of the total residential exposures. One type of the possible gas-phase reactions for indoor ozone, the reaction of ozone with a volatile organic compound containing unsaturated carbon-carbon bonds, is discussed with some supporting evidence provided in the study.  相似文献   

18.
The effects of air filtration and ventilation on indoor particles were investigated using a single-zone mathematical model. Particle concentration indoors was predicted for several I/O conditions representing scenarios likely to occur in naturally and mechanically ventilated buildings. The effects were studied for static and dynamic conditions in a hypothetical office building. The input parameters were based on real-world data. For conditions with high particle concentrations outdoors, it is recommended to reduce the amount of outdoor air delivered indoors and the necessary reduction level can be quantified by the model simulation. Consideration should also be given to the thermal comfort and minimum outdoor air required for occupants. For conditions dominated by an indoor source, it is recommended to increase the amount of outdoor air delivered indoors and to reduce the amount of return air. Air filtration and ventilation reduce particle concentrations indoors, with the overall effect depending on efficiency, location and the number of filters applied. The assessment of indoor air quality for specific conditions could be easily calculated by the model using user-defined input parameters.  相似文献   

19.
The effect of filtration and ventilation on reduction of submicrometer particle concentration indoors was investigated in an office building. The air-handling system consisting of dry media filters and an air-conditioning unit, reduced particle concentration levels by 34%. The characteristics of indoor airborne particles were dominated by, and followed the pattern of, outdoor air, with vehicle combustion aerosols as the main pollutant. The ratio indoor/outdoor particle concentration varied between 14 and 26% for different sub-zones. The presence of significant source of particles indoors was not observed. A simple mathematical model predicting evolution of particles indoors is presented. The model, based on a particle number balance equation, was validated with experimental data and showed very good agreement between predicted and measured parameters.  相似文献   

20.
This field study investigated the relationship between indoor and outdoor concentrations of airborne actinomycetes, fungal spores, and pollen. Air samples were collected for 24 h with a button inhalable aerosol sampler inside and outside of six single-family homes located in the Cincinnati area (overall, 15 pairs of samples were taken in each home). The measurements were conducted during three seasons - spring and fall 2004, and winter 2005. The concentration of culturable actinomycetes was mostly below the detection limit. The median indoor/outdoor ratio (I/O) for actinomycetes was the highest: 2.857. The indoor of fungal and pollen concentrations followed the outdoor concentrations while indoor levels were mostly lower than the outdoor ones. The I/O ratio of total fungal spores (median=0.345) in six homes was greater than that of pollen grains (median=0.025). The low I/O ratios obtained for pollen during the peak ambient pollination season (spring) suggest that only a small fraction penetrated from outdoor to indoor environment. This is attributed to the larger size of pollen grains. Higher indoor concentration levels and variability in the I/O ratio observed for airborne fungi may be associated with indoor sources and/or higher outdoor-to-indoor penetration of fungal spores compared to pollen grains. Practical Implication This study addresses the relationship between indoor and outdoor concentrations of three different types of bio-aerosols, namely actinomycetes, fungal spores, and pollen grains. The results show that actinomycetes are rare in indoor and outdoor air in Midwest, USA. Exposure to pollen occurs mainly in the outdoor air even during peak pollen season. Unexpectedly high fungal spore concentrations were measured outdoors during winter. The presented pilot database on the inhalable levels of indoor and outdoor bio-aerosols can help apportion and better characterize the inhalation exposure to these bio-aerosols. Furthermore, the data can be incorporated into existing models to quantify the penetration of biological particles into indoor environments from outdoors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号