首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
High-strength silicon carbide fibre-reinforced glass-matrix composites   总被引:2,自引:0,他引:2  
Silicon carbide fibre-reinforced glass-matrix composites have been fabricated and tested. Two fibre forms, a 140 μm diameter monofilament and a 10 μm diameter filamentary yarn, were incorporated into a matrix of borosilicate glass. The hot-pressing fabrication procedure resulted in fully dense unidirectionally reinforced specimens with excellent flexural strength and fracture toughness over the temperature range 22 to 700° C. In addition, composite thermal expansion was found to be nearly independent of fibre orientation indicating that multiaxially reinforced composites should be readily fabricable without the occurrence of extensive cracking.  相似文献   

2.
An aluminosilicate glass matrix composite material reinforced by randomly oriented SiC-based (Tyranno) chopped fibres was fabricated. Slurry dipping and hot-pressing techniques were used to prepare dense composites containing 45 vol% fibres uniformly dispersed in the glass matrix. The mechanical properties and fracture mechanisms of the composite under flexion and compression loading were studied. In flexure, the composite showed higher modulus and strength than the unreinforced glass. However, in compression, the strength of the composite was lower than that of the monolithic glass. Considering the potential application of the material at high temperatures, the thermal aging behaviour of the composite in air at temperatures between 500 and 700°C was investigated. The composite retained its room-temperature compressive strength after exposure for 26 h at 500°C. The variation of compressive strength measured after exposures at higher temperatures was ascribed to mechanisms of fibre/matrix interface oxidation and to the softening of the glass matrix.  相似文献   

3.
The high temperature behaviour of a Ti-6Al-4V/TiCp composite (10% Vol. of TiC) was investigated. A composite produced by Dynamet Technology according to the blended-elemental-cold-hot isostatic pressing (BE-CHIP) method was used. The stress-strain properties of the material were tested at 25, 200, 400, 500, 600 and 800°C. Composite specimens were aged in air at 500 and 700°C or under vacuum at 500, 700 and 1050°C, for periods ranging between 100 and 500 hours. The thermal stability of the matrix/ceramic interfaces was studied by using scanning electron microscope, electron probe microanalysis and x-ray diffraction. Carbon diffusion from the ceramic particles towards the composite matrix occurred (very likely already during the composite fabrication) because the metal matrix of all the composite samples (either in the as received or thermally treated conditions) showed a high content of carbon (more than 1% at.). However, the thermal treatments carried out at both 500 and 700°C under vacuum did not result in a ceramic-metal reaction. In spite of this, the formation of an ordered phase of formula Ti2C can be inferred. Long period aging under vacuum at 700°C (500 h) did not lower the composite tensile strength. On the other hand, above 500°C in air the titanium matrix rapidly underwent oxidation, which gave rise to the formation of a thick surface reaction layer; this confirms that the composite material cannot be used above this temperature. Furthermore, the thermal treatment performed at 1050°C (under vacuum) resulted in a strong composite microstructure modification: the formation of new mixed carbides of Al and Ti was observed.  相似文献   

4.
Unidirectional carbon fibre reinforced SiC composites were prepared from four types of carbon fibres, PAN-based HSCF, pitch-based HMCF, CF50 and CF70, through nine cycles or twelve cycles of impregnation of polycarbosilane and subsequent pyrolysis at 1200°C. The polycarbosilane-derived matrix was found to be -SiC with a crystallite size of 1.95 nm. The mechanical properties of the composites were evaluated by four-point bending tests. The fracture behavior of each composite was investigated based on load-displacement curves and scanning electron microscope (SEM) observation of fracture surfaces of the specimens after tests. It was found that CF50/SiC and CF70/SiC exhibited high strength and non-brittle fracture mode with multiple matrix cracking and extensive fibre pullout, whereas HSCF/SiC and HMCF/SiC exhibited low strength and brittle fracture mode with almost no fibre pullout. The differences in the fracture modes of these carbon fibre/SiC composites were thought to be due to differences in interfacial bonding between carbon fibres and matrix. Values of flexural strengths of CF70/SiC and CF50/SiC were 967 MPa and 624 MPa, respectively, which were approximately 75% and 38% of the predicted values. The relatively lower strength of CF50/SiC, compared with CF70/SiC, was mainly attributed to the shear failure of CF50/SiC during bending tests.  相似文献   

5.
Effect of thermal cycling on whisker-reinforced dental resin composites   总被引:3,自引:0,他引:3  
The mechanical properties of dental resin composites need to be improved in order to extend their use to high stress-bearing applications such as crown and bridge restorations. Recent studies used single crystal ceramic whiskers to reinforce dental composites. The aim of this study was to investigate the effects of thermal cycling on whisker-reinforced composites. It was hypothesized that the whisker composites would not show a reduction in mechanical properties or the breakdown of whisker–resin interface after thermal cycling. Silicon carbide whiskers were mixed with silica particles, thermally fused, then silanized and incorporated into resin to make flexural specimens. The filler mass fraction ranged from 0% to 70%. The specimens were thermal cycled in 5 °C and 60 °C water baths, and then fractured in three-point bending to measure strength. Nano-indentation was used to measure modulus and hardness. No significant loss in composite strength, modulus and hardness was found after 105 thermal cycles (family confidence coefficient=0.95; Tukey's multiple comparison test). The strength of whisker composite increased with filler level up to 60%, then plateaued when filler level was further increased to 70%; the modulus and hardness increased monotonically with filler level. The strength and modulus of whisker composite at 70% filler level were significantly higher than the non-whisker controls both before and after thermal cycling. SEM revealed no separation at the whisker–matrix interfaces, and observed resin remnants on the pulled-out whiskers, indicating strong whisker–resin bonding even after 105 thermal cycles. In conclusion, novel dental resin composites containing silica-fused whiskers possessed superior strength and modulus compared to non-whisker composites both before and after thermal cycling. The whisker–resin bonding appeared to be resistant to thermal cycling in water, so that no loss in composite strength or stiffness occurred after prolonged thermal cycling.  相似文献   

6.
Boron-doped carbon-carbon composites with boron concentration around 11–15 mass % were prepared from a carbon fibre felt with dispersed boron carbide powder by infiltration of pyrolytic carbon. The composite was heat treated at several different temperatures from 2000–2800 °C. The highest bending strength was obtained for the composite at a heat treatment temperature (HTT) of 2200 °C. Carbon fibre began to be destroyed after heat treatment at 2400 °C and the structure of the composite was drastically changed above 2600 °C where the anisotropy of the composite originally existing in the thermal expansion coefficient and the thermal conductivity has been faded away. X-ray diffraction measurement indicated that graphitization of the composite was enhanced by boron doping. At HTTs above 2400 °C, the composite became graphitic, the crystallite sizes of which were more than 100 nm in Lc (004) and La (110). It was shown that boron was uniformly distributed in the composite at an HTT of 2400 °C and also that heat treatment at higher temperatures, such as 2600 °C, incurred condensation of boron. Air-oxidation loss at 800 °C appeared to be the lowest for the composite with an HTT of 2400 °C and the rate of oxidation loss was 22 times lower than that of the non-boron-doped composite.  相似文献   

7.
Silicon carbide fibre reinforced glass-ceramic matrix composites have been investigated as a structural material for use in oxidizing environments to temperatures of 1000° C or greater. In particular, the composite system consisting of SiC yarn reinforced lithium aluminosilicate (LAS) glass-ceramic, containing ZrO2 as the nucleation catalyst, has been found to be reproducibly fabricated into composites that exhibit exceptional mechanical and thermal properties to temperatures of approximately 1000° C. Bend strengths of over 700 MPa and fracture toughness values of greater than 17 MN m–3/2 from room temperature to 1000° C have been achieved for unidirectionally reinforced composites of 50 vol% SiC fibre loading. High temperature creep rates of 10–5 h–1 at a temperature of 1000° C and stress of 350 MPa have been measured. The exceptional toughness of this ceramic composite material is evident in its impact strength, which, as measured by the notched Charpy method, has been found to be over 50 times greater than hot-pressed Si3N4.  相似文献   

8.
Thermal shock resistance of an SiC fibre-(Nicalon®) reinforced borosilicate glass (Pyrex) and lithium aluminosilicate (LAS) matrix composite has been investigated experimentally in the temperature range 0–1000 K. Longitudinal Young's modulus and flexure strength of the composites after thermal shock were obtained as a function of thermal shock temperature. The results are discussed with the observed damage of the composite. The borosilicate glass matrix composite showed multiple cracking of the glass matrix perpendicular to the fibre axis when the thermal shock temperature was above 600 K. Decreases in Young's modulus and flexure strength were also recognized after multiple cracking of the matrix was initiated. On the other hand, the LAS matrix composite showed no damage at thermal shock temperatures below 800 K. However, at 800 K and above, microcracking of the matrix along the fibre axis was observed. After thermal shock, no decrease in the flexure strength was recognized, while the Young's modulus decreased due to microcracking of the matrix when the thermal shock temperatures were 800 K and above. It was found that the major advantage of the composite against thermal shock was to retain non-catastrophic failure properties even after the development of thermally induced damage in the composite.  相似文献   

9.
The environmental response of hybrid composites   总被引:1,自引:0,他引:1  
Hybrid composite specimens containing a total of 60 or 75 vol % of unidirectional fibre were prepared from HT S-carbon fibre and E-glass fibre, HT S-carbon fibre and Kevlar 49 fibre, and E-glass fibre and Kevlar 49 fibre with a standard anhydride cured epoxide resin. The specimens were divided into four groups and subjected to the following environments: (A) room temperature and humidity; (B) soaked in water for 300 h at 95° C and then oven dried at 60° C to a constant weight; (C) thermally cycled 100 times between –196 and 95° C; (D) cycled 35 times between –196 and water at 95° C. The flexural properties of the samples were measured at room temperature after exposure. The modulus of the hybrid materials was not significantly affected by any of the treatments, although thermal cycling with or without water caused a large decrease in the modulus of all Kevlar fibre/resin and to a lesser extent all glass fibre specimens. The flexural strength of the unexposed carbon fibre/glass fibre and glass fibre/Kevlar fibre hybrids showed a positive deviation from the rule of mixtures behaviour at low volume loadings of the lower extension fibre. Wet thermal cycling or soaking in water caused a substantial reduction in the flexural strength of glass fibre/Kevlar fibre specimens. The interlaminar shear strength of all three fibre combinations was not affected by dry thermal cycling, but the effects of soaking in water and especially thermal cycling with water exposure were significant and irreversible.  相似文献   

10.
In this paper, Tif/TiAl3 composites were fabricated by infiltration–in situ reaction method and its oxidation behaviours were investigated by cyclic oxidation testing at 700 °C, 800 °C and 900 °C. The microstructure evolution and oxidation of Tif/TiAl3 composites were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive X-ray diffraction (EDX). The reaction between Ti3Al particles and Al was more violent than that of Ti fibres and Al. Ti3Al/Al reaction consumed a large amount of Al and inhibited the reaction of Ti fibres indirectly. Reactant of Ti fibres was TiAl3 at 700 °C, and four reaction layers surrounding Ti fibre (Ti3Al, TiAl, TiAl2 and TiAl3 from inner to outside) were observed above 800 °C. The thickness of the total reaction layers increased little with temperature and time, while the thickness of inner reaction layers increased remarkably. A model corresponding to the microstructure evolution process was drawn schematically. Oxidation resistance of Tif/TiAl3 composites decreased with increasing of temperature, and changed from cubic law at 700 °C to parabolic law at 900 °C. The oxidation weight gain of Tif/TiAl3 composite was dominated by the exposed Ti fibres. Due to outward diffusion of Ti and Al element, the oxide of Ti fibre at 900 °C changed to mushroom-shape. Fortunately, when TiAl3 was oxidized, a thin and continuous Al2O3 layer was formed, protecting matrix from further oxidation.  相似文献   

11.
Carbon fibre reinforced borosilicate glass matrix composites have been fabricated to determine their mechanical properties in tension and flexure. Composite tensile stress-strain properties, including elastic modulus, proportional limit and ultimate tensile strength, have been measured as a function of fibre content. Composite tensile properties were also obtained at temperatures of up to 625° C through the testing of 0/90 cross-plied specimens. Composite short-beam shear strength was found to depend on specimen orientation and also on the composition of the glass matrix. This compositional dependence was associated with an independent measurement of the fibre-matrix interfacial shear strength and was related to the degree of fibre-matrix reaction taking place during composite fabrication.  相似文献   

12.
Microstructure, oxidation behaviour, and electrical and mechanical properties of quasi-carbon fibre-reinforced quasi-carbon matrix (QC/QC) composites were investigated. The composite was prepared by heat treating a QC fibre or OXPAN fibre-reinforced polymer matrix composite at a temperature of 500 °C. Different polymer precursors have resulted in the QC/QC composites with varying thermal behaviour. The phenolic matrix derived QC/QC composites followed a self-acceleration mechanism and had better oxidation resistance than the polyacrylonitrile (PAN) matrix-derived QC/QC composites. Because of fewer chemical reactions involved in the pyrolysis process, the QC/QC composites obtained from QC fibre-reinforced composite precursors exhibited higher flexural modulus and strength and were superior to those derived from oxidized PAN (OXPAN) fibre-reinforced composite precursors. Unique semiconducting and switching characteristics have been observed in the QC/QC composites, which would make them promising for electronic device applications. © 1998 Chapman & Hall  相似文献   

13.
The present paper proposes an approach to characterizing fibre/matrix (F/M) interface in carbon/carbon (C/C) composites with respect to both modes of loading that may be expected: opening or shearing. Push-out and tensile tests were used. The former tests involve the shearing mode whereas the latter ones involve the opening one. Push-out tests use a diamond indenter to load the fibres. The interface sliding shear stress was obtained from the load-fibre displacement curve. The tensile tests were conducted on specimens having fibres oriented at 90° with respect to loading direction in order to preferentially open the interfaces. Interface opening strength was extracted from the composite tensile stress–strain behaviour. The specimens were examined under load and after ultimate failure by optical microscopy (OM). The mechanical properties of the F/M interfaces were then discussed.  相似文献   

14.
A new kind of oxidation protection coating of Si-MoSi2 was developed for three dimensional carbon fiber reinforced silicon carbide composites which could be serviced upto 1550 °C. The overall oxidation behavior could be divided into three stages: (i) 500 °C < T < 800 °C, the oxidation mechanism was considered to be controlled by the chemical reaction between carbon and oxygen; (ii) 800 °C < T < 1100 °C, the oxidation of the composite was controlled by the diffusion of oxygen through the micro-cracks, and; (iii) T > 1100 °C, the oxidation of SiC became significant and was controlled by oxygen diffusion through the SiC layer. Microstructural analysis revealed that the oxidation protection coating had a three-layer structure: the out layer is oxidation layer of silica glass, the media layer is Si + MoSi2 layer, and the inside layer is SiC layer. The coated C/SiC composites exhibited excellent oxidation resistance and thermal shock resistance. After the composites annealed at 1550 °C for 50 h in air and 1550 °C 100 °C thermal shock for 50 times, the flexural strength was maintained by 85% and 80% respectively. The relationship between oxidation weight change and flexural strength revealed the criteria for protection coating was that the maximum point of oxidation weight gain was the failure starting point for oxidation protection coating.  相似文献   

15.
Isothermal oxidation of 6061 Al, reinforced with chopped carbon fibres and SiC particles, was studied to investigate the applicability of these composites in the temperature range 300–500 °C, in terms of their degradation due to oxidation. Carbon/aluminium composite suffered a tremendous loss in weight at 350 °C. The extent of the damage due to oxidation for SiC/Al composites depended upon the concentration of nucleation sites, which formed the interface between the composite and the matrix. The number of such sites depended upon the volume fraction and size of the dispersed particles. Analysis of the oxide scale was carried out using SEM/EDAX and X-ray diffraction. The deterioration in strength of the composites, due to oxidation, was determined by tensile testing of exposed specimens.  相似文献   

16.
A continuous Si-Ti-C-O fibre with 12 wt% oxygen content, which is lower than the usual 18 wt% found in the normal fibres, was synthesized by using polytitanocarbosilane which has fewer Si-Si bonds than the usual precursor polymer. The density, tensile strength, tensile modulus and thermal conductivity were found to be 2.37 g cm–3, 3.4±0.3 GPa, 190±10 GPa and 1.40 W m–1 K–1, respectively. Amongst these properties, the tensile modulus was improved by 20 GPa and the thermal conductivity had a higher value in comparison with that of the ordinary Si-Ti-C-O fibre with 18 wt% oxygen content. The Si-Ti-C-O fibre with a 12 wt% oxygen content has a better heat resistance above 1400 °C in an argon atmosphere and 1300 °C in air, than the usual fibre. About 60 and 40% of its tensile strength at room temperature were retained in air at respectively, 1500 and 1600 °C. This improved ceramic fibre is considered to be useful as a reinforcing material for advanced composites such as high-temperature ceramic matrix composites and metal matrix composites.  相似文献   

17.
The thermal properties have been studied on a glass ceramic composite comprised of a barium osumilite (BMAS) matrix reinforced with SiC (Tyranno) fibres which has been subjected to a heat treatment in air in the range of 700–1,200 °C. Microstructural studies were carried out especially on of the interface between fibre and matrix. The presence of a carbon thin layer in the interface is a typical observation in SiC fibre-reinforced glass ceramic matrix composite systems. The microstructural evaluation and thermal properties showed a degradation of interfacial layer occurred at low heat treatment temperatures, (700–800 °C) this was attributed to the fact that, at those heat treatment temperatures the carbon rich layer formed during processing was oxidised away leaving voids between fibre and matrix, which were linked by isolated silicon-rich bridges. After heat treatment at higher temperatures of 1,000–1,200 °C, the thermal properties were retained or even enhanced by leaving a thick interfacial layer.  相似文献   

18.
The role of interfacial adhesion between fibre and matrix on the residual strength behaviour of carbon-fibre-reinforced metal laminates (FRMLs) has been investigated. Differences in fibre/matrix adhesion were achieved by using treated and untreated carbon fibres in an epoxy resin system. Mechanical characterisation tests were conducted on bulk composite specimens to determine various properties such as interlaminar shear strength (ILSS) and transverse tension strength which clearly illustrate the difference in fibre/matrix interfacial adhesion. Scanning electron microscopy confirmed the difference in fracture surfaces, the untreated fibre composites showing interfacial failure while the treated fibre composites showed matrix failure. No clear differences were found for the mechanical properties such as tensile strength and Young's modulus of the FRMLs despite the differences in the bulk composite properties. A reduction of 7·5% in the apparent value of the ILSS was identified for the untreated fibre laminates by both three-point and five-point bend tests. Residual strength and blunt notch tests showed remarkable increases in strength for the untreated fibre specimens over the treated ones. Increases of up to 20% and 14% were found for specimens with a circular hole and saw cut, respectively. The increase in strength is attributed to the promotion of fibre/matrix splitting and large delamination zones in the untreated fibre specimens owing to the weak fibre/matrix interface.  相似文献   

19.
High-temperature mechanical behaviour of Nicalon/CAS-II composite has been investigated. Oxidation of the exposed interfaces along matrix cracks at 1000 °C lowered the longitudinal unidirectional strength to the stress level at which matrix cracking began to occur. The strength of cross-plied composites was also severely reduced in 800 °C air. Transverse plies cracked prior to 0° ply matrix cracking. However, embrittlement did not occur until the matrix in the 0° plies cracked. It was established that oxidation does not take part in crack growth parallel to the fibres, except adjacent to exposed edges. Neither does oxygen enter 90° ply cracks in cross-plied composites in sufficient quantity to produce oxidation embrittlement, at least up to the 0° matrix cracking strain.The work was established while the author was at the Department of Chemical Engineering at Montana State University.  相似文献   

20.
A unidirectional composite and a series of bidirectionally reinforced composites were fabricated using carbon fibre reinforcement in a silicon carbide matrix, which was produced by the pyrolysis of a polymer precursor. The thermal expansion over the temperature range 20–1000 °C has been measured and the thermal diffusivity measured over the temperature range 200–1200 °C. Thermal diffusivity data was converted to conductivity data using measured density and literature specific heat data. Metallographic examination has been carried out on the composites and the results are discussed in terms of the observed microstructural features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号