首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Dual-alloy turbine wheels produced by solid-state diffusion bonding of vacuum investment cast blade rings of one superalloy to preconsolidated powder metal hubs of a second superalloy have the long cyclic lives characteristic of wrought or powder superalloys combined with the high creep strength and net-shape blades characteristic of cast superalloys. A wide variety of superalloys and turbine configurations are compatible with this technology. Improved temperature capability turbine blades and vanes of the MAR-M 247 alloy made by directional solidification casting processes are now in volume production for Garrett gas turbines. Single-crystal alloys derivative to MAR-M 247 further extend the temperature capability of turbine blades and have been successfully engine tested. These blades are produced by a relatively simple modification of the processes used to manufacture directionally solidified blades.  相似文献   

2.
This overview summarizes process improvements in wrought and cast superalloy components for turbine engine applications. Techniques such VIM, VAR, ESR and electron beam melting are discussed with respect to product cleanliness. Property enhancement is now an important consideration of forging technology. Scientists are quantifying the dependence of crack growth on microstructure and alloy design. Directional solidification casting practices that promote integrity and property enhancement are achievable through careful process control. State-of-the-art developments and future directions for the industry are also reviewed.  相似文献   

3.
实现盘缘与盘心异种变形高温合金的高强冶金连接是制造双合金涡轮盘的关键。本研究选择粉末高温合金为盘缘材料、变形高温合金为盘心材料,采用电子束焊接盘缘与盘心。电子束焊接后的焊缝区域不仅具有两种母材的结构特征(即粉末高温合金和变形高温合金的结构特征),而且焊缝区存在明显的铸造组织。两种高温合金材料电子束焊接后形成了组织特征鲜明的“粉冶-铸-锻” 结构。本文首次研究了“粉冶-铸-锻”的变形行为,并重点探讨了焊缝的组织演化规律。相关研究结果不仅丰富了异种高温材料连接区的增强方法与组织控制方法,而且为发展双合金等温变形技术提供了科学依据。  相似文献   

4.
The advancement of jet engine technology has traditionally given wrought superalloys eminence when design calls for both reasonable high temperature strength and dynamic fracture reliability. Despite the attractiveness of cast superalloys for their improved buy-to-fly ratios and higher strengthening γ volume fractions, the expansion of polycrystalline castings into the more critical of the superalloy applications has been prevented by a lack of sufficient micro structural control in casting technology. Recently, however, advances in casting technology are making possible the production of defect tolerant superalloy castings with improved fracture reliability. This new generation of superalloy castings now offers serious competition to wrought superalloys. Never before have wrought superalloys been so seriously threatened by their cast counterparts.  相似文献   

5.
The microstructure evolution of Ni-Fe superalloys has a great influence on the mechanical behavior during service conditions. The rotary forging process offers an alternative to conventional bulk forming processes where the parts can be rotary forged with a fraction of the force commonly needed by conventional forging techniques. In this investigation, a numerical modeling of microstructure evolution for design and optimization of the hot forging operations has been used to manufacture a heat-resistant nickel-based superalloy. An Avrami model was implemented into finite element commercial platform DEFORM 3D to evaluate the average grain size and recrystallization during the rotary forging process. The simulations were carried out considering three initial temperatures, 980, 1000, and 1050 °C, to obtain the microstructure behavior after rotary forging. The final average grain size of one case was validated by comparing with results of previous experimental work of disk forging operation. This investigation was aimed to explore the influence of the rotary forging process on microstructure evolution in order to obtain a homogenous and refined grain size in the final component.  相似文献   

6.
FGH96合金的热塑性变形行为和工艺   总被引:1,自引:0,他引:1  
通过高温热压缩实验,得到了不同温度和不同应变速率条件下热等静压FGH96合金的真应力-应变曲线,在此基础上,建立了FGH96合金热塑性变形过程中的热加工图.通过对材料微观组织、应力应变响应及热加工图的对比分析,确定了优化的热塑性锻造窗口,提出了FGH96合金细晶盘坯锻造工艺.根据优化的热塑性锻造窗口,利用等温锻造工艺锻造出无开裂的细晶粒盘坯.  相似文献   

7.
Alloy selection and alloy design both require consideration of an array of material attributes, including in-service properties, weldability and fabricability.Critical properties of advanced wrought superalloys for gas turbine applications include high temperature strength, thermal stability, oxidation resistance and fatigue resistance.In this paper, the properties of twelve wrought solid-solution-strengthened and six age-hardenable superalloys are compared.Weldability is an important attribute and can be a major limiting factor in the use of certain alloys.Weldability test methods are discussed and the resistance of alloys to solidification cracking and strain-age cracking is compared.The use of weldability testing in the development of modern wrought superalloys is discussed with several examples cited.Finally, alloy selection for gas turbine components is outlined, taking into account both alloy properties and fabricability.  相似文献   

8.
防护涂层技术对于提高涡轮叶片材料抗氧化腐蚀性能、保证涡轮叶片安全服役具有至关重要的作用,然而,防护涂层与高温合金间有本征的物理、化学性能不匹配性,其界面反应会导致界面组织退化,合金与涂层性能下降,成为制约涂层应用的关键因素。本文概述了典型涂层/高温合金界面组织演变与扩散行为及其影响因素,讨论了界面行为对含涂层高温合金组织稳定性和力学性能的影响,从涂层组织成分优化、界面阻扩散层设计和新型界面稳定涂层研发3个方面介绍了涂层/合金界面的调控方法。总结了涂层/高温合金界面相容性的关键特征,并提出未来应在界面对涂层/合金性能的影响规律与机制、调控界面的多手段联用、计算辅助涂层设计等方面开展系统性研究。  相似文献   

9.
高温合金因优良的综合高温性能在航空航天、石油化工等领域有广泛应用,高温合金环锻件主要用于机匣、燃烧室、密封环等部件。随着高性能航空发动机的发展,对高品质高温合金环锻件的需求日益增加。以往高温合金研究重点在于涡轮盘和叶片材料的合金优化设计、制备工艺和变形机理研究等,而对高温合金环锻件研究报道稍显薄弱。为此,本文总结了高温合金环形件环轧技术的发展、数值模拟在高温合金环轧技术探索中的应用、主要高温合金环锻件材料的种类以及高温合金环锻件组织控制的难点,以期为高品质高温合金环锻件的研发和制备提供一定的理论参考。  相似文献   

10.
Alloy selection and alloy design both require consideration of an array of material attributes, including in-service properties, weldability and fabricability. Critical properties of advanced wrought superaUoys for gas turbine applications include high temperature strength, thermal stability, oxidation resistance and fatigue resistance. In this paper, the properties of twelve wrought solid-solution-strengthened and six age-hardenable superalloys are compared. Weldability is an important attribute and can be a major limiting factor in the use of certain alloys. Weldability test methods are discussed and the resistance of alloys to solidification cracking and strain-age cracking is compared. The use of weldability testing in the development of modern wrought superalloys is discussed with several examples cited. Finally, alloy selection for gas turbine components is outlined, taking into account both alloy properties and fabricability.  相似文献   

11.
综合分析了国外第3代粉末高温合金的化学成分、显微组织和点阵常数,总结出新型涡轮盘用高性能粉末高温合金的研发趋势,重点介绍了作者课题组与钢铁研究总院合作在国内率先进行我国新型第3代高性能粉末高温合金的初期研究工作与成果,并提出了研制高性能粉末高温合金的重点研究方向。  相似文献   

12.
In the quest for higher operating temperatures, aircraft engine designers seek to improve properties of existing superalloys through a variety of different means. The heat treatment of superalloy forgings, particularly the cooling rate from solutioning temperature, is a key factor in their final properties. Modeling the cooling rate can be used to optimize the properties of a forging, and can help designers avoid quench cracks and residual stresses as well.  相似文献   

13.
The heat-treatment processes for nickel-based superalloys continue to change due to the development of new alloys, new requirements, and subsequent new manufacturing facilities. Nickel-based superalloys are continuing to evolve to meet emerging applications, while new alloys are also being introduced for advanced applications. These new materials are also being optimized for numerous mechanical and physical properties, making the selection of heat-treatment parameters increasingly challenging. New processing facilities and methods are also being implemented to allow tailoring of heat-treating parameters to meet these new challenges. For example, the Ladish SuperCooler technology allows engineering and control of all aspects of the heat-treatment process for nickel-based components, resulting in never-before possible disc properties. For more information, contact D.U. Furrer, Ladish Company, P.O. Box 8902, Cudahy, WI 53110-8902; (414) 747-3063; e-mail dfurrer@ladishco.com.  相似文献   

14.
镍基变形高温合金的热处理组织转变及金相分析   总被引:1,自引:0,他引:1       下载免费PDF全文
概述了镍基变形高温合金的强化方式及不同热处理制度下的显微组织转变,对晶粒度、夹杂物、析出相的转变机理以及金相评定方法进行了归纳总结,以期为镍基变形高温合金的组织性能优化及检验提供参考。  相似文献   

15.
为提高锻件质量和成品率,有必要建立一种适合于实时控制的锻件成形过程模型.利用有限元模拟技术对涡轮盘的等温成形过程进行了虚拟正交试验,通过对成形过程的载荷--行程曲线的分析,建立了粉末高温合金涡轮盘件等温成形过程的人工神经网络(ANN)模型,并将其映射成模拟电路模型.以此模拟电路模型为参考模型,应用于模型参考自适应控制(MRAC)系统,对涡轮盘件等温成形过程进行控制.结果表明,所建立的ANN模型及其模拟电路模型对粉末高温合金涡轮盘件等温成形过程的拟合精度很高,且控制参数始终与模型输出相吻合,为实现盘件成形过程的实时控制奠定了基础.  相似文献   

16.
多向锻造对变形镁合金AZ31组织和力学性能的影响   总被引:1,自引:0,他引:1  
文章采用不同锻造工艺对电磁连铸变形镁合金AZ31铸锭进行了多向锻造研究。结果表明,通过大变形的多向锻造后,变形镁合金AZ31可以得到有效细化,多向锻造有利于变形镁合金发生再结晶,锻造后变形镁合金AZ31最终得到均匀细小的等轴晶组织。工艺3得到最好的综合性能,锻造后变形镁合金AZ31硬度和抗拉强度分别提高了22.5%和33.5%,延伸率也有所提高。多向锻造后,室温拉伸试样的断口形貌出现大量的韧窝,表现为剪切断裂为主的韧性断裂。  相似文献   

17.
针对Ti-6Al-4V合金汽轮机动叶片出现的组织异常,研究了两种热处理工艺对Ti-6Al-4V合金组织与性能的影响,并对锻造加热温度对该材料显微组织的影响进行了探讨。研究结果表明,Ti-6Al-4V合金汽轮机动叶片的组织异常是由于锻造加热温度过高或加热时间过长引起的,Ti-6Al-4V合金锻后采用固溶+时效或直接时效的热处理的方案都能满足产品毛坯性能要求,且锻后直接时效性能更优异。  相似文献   

18.
New low-density single-crystal (IDS) alloys have been developed for turbine blade applications, which have the potential for significant improvements in the thrust-to-weight ratio over current production superalloys. An innovative alloying strategy was used to achieve alloy density reductions, high-temperature creep resistance, micro-structural stability, and cyclic oxidation resistance. The alloy design relies on molybdenum as a potent, lower-density solid-solution strengthener in the nickel-based superalloy. Low alloy density was also achieved with modest rhenium levels and the absence of tungsten. Microstructural, physical, mechanical, and environmental testing demonstrated the feasibility of this new IDS superalloy design.  相似文献   

19.
With respect to the wrought processing of γ-TiAl alloys, the hot forging processes for ingot-breakdown is one of the most important steps. To obtain a billet with fine and uniform microstructure and excellent mechanical performances, an understanding of the strictly controlled forging processes and microstructure evolution are necessary. The hot forging processes and microstructure evolution of a high Nb containing TiAl alloy with nominal composition of Ti–43Al–8Nb–0.2W–0.1Y (at.%) were investigated in this paper. Three forging routes, one-step canned forging (OCF), one-step non-canned forging (ONF) and multi-step non-canned forging (MNF), were designed to study their effect on microstructure evolution of as-forged materials. Results showed that OCF and ONF produced nonuniform microstructures due to inhomogeneous deformation, while the specifically designed MNF process yielded fine and uniform grains, indicating that it is an effective and economic approach for ingot break-down of the present alloy. Besides, it is also found that forging at (α + β) phase region can retain large amount of β/B2 phase due to the strain-induced segregation of Nb and W, which is beneficial to the workability, and thus enables the use of near-conventional forging operations for the present alloy. The proposed multi-step forging in the present work may yield important information for the development of hot-deformation techniques and new alloy design strategies of γ-TiAl alloys.  相似文献   

20.
选择性激光熔炼(SLM)建立在激光熔覆/沉积基础上,能够由粉末直接制备或修复近成形高性能部件。选择性激光熔炼部件优异的力学性能是保证其用于航空发动机产品的先决条件。镍基高温合金IN718广泛用于制备航空发动机中的高性能部件。在过去的研究中,利用预合金化IN718合金粉末,通过选择性激光熔炼制备出增材制造部件。通过优化激光沉积过程试验参数,以最大限度地降低气孔率。对沉积态、直接时效态、固溶时效态、均匀化后固溶时效态四种状态激光沉积IN718合金的显微组织和力学性能进行了对比分析。拉伸试验结果显示,直接时效态合金强度最高,均匀化后固溶时效态合金塑性最好。综合考虑三种热处理状态的室温和高温拉伸试验结果,均匀化后固溶时效态试样不仅具有优于锻态AMS标准的强度,而且有很好的塑性。因此,选择均匀化后固溶时效处理作为选择性激光熔炼IN718合金的热处理方式。考察了该种热处理状态合金的650oC/700MPa和725MPa持久性能和455oC低周疲劳性能,并与锻态IN718进行了对比。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号