首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper investigates the dynamic deformation behavior of bovine femur using a modified split Hopkinson pressure bar (SHPB) with a pulse shaper technique. The shape of the incident and reflected pulses modulated by the pulse shaper were measured and compared to each other to find a suitable thickness. The experiments were carried out under varying strain rates with a selected thickness for the pulse shaper. The effect of pulse shaper thickness on the rising time, stress-strain relationship, strain rates, and front and back-end stresses during the dynamic deformation period was investigated. Experimentally-obtained data were used to find a bilinear relationship between the failure stresses and the strain rates of bovine femur specimens in both longitudinal and radial directions. The failure strains, however, linearly decreased with increasing strain rates.  相似文献   

2.
Mechanical properties of the materials used for transportations and industrial machinery under high strain rate loading conditions such as seismic loading are required to provide appropriate safety assessment to these mechanical structures. The Split Hopkinson Pressure Bar (SHPB) technique with a special experimental apparatus can be used to obtain the material behavior under high strain rate loading conditions. In this paper, dynamic deformation behaviors of the aluminum alloys such as A12024-T4, A16061T-6 and A17075-T6 under both high strain rate compressive and tensile loading conditions are determined using the SHPB technique.  相似文献   

3.
The conventional split Hopkinson pressure bar (C-SHPB) technique with a special experimental apparatus is used to obtain a dynamic deformation material behavior under a high strain rate loading condition. An experimental modification is introduced to reduce the non-equilibrium on the dynamic material response during a short test period for two polymeric materials. The proposed method uses aluminum pressure bars to achieve a closer impedance match between the pressure bars and the specimen materials such as hot temperature degraded POM (Poly Oxy Methylene) and PP (Poly Propylene) to obtain more distinguishable experimental signals. In addition, a pulse shaper technique is used for increasing the rise time of the incident pulse to ensure the dynamic stress equilibrium and the homogeneous deformation in the specimen under dynamic compression loading condition. The details on the dynamic stress equilibrium and the duration of uniform strain rate during the dynamic deformation of the specimen are experimentally investigated. The effects of degradation at a few different hot temperatures on the maximum compressive stresses are also experimentally studied under varying impulsive loading conditions.  相似文献   

4.
为了能够准确地反映材料成形方向对其动态力学性能的影响,利用电子万能试验机及分离式霍普金森压杆(SHPB)装置,对航空铝合金7050-T7451板材沿不同成形方向(法向ND,横向TD,轧向RD)取样,并进行准静态加载试验和动态冲击剪切试验。结果表明:成形方向是影响材料准静态和动态力学性能的重要因素之一,在动态冲击剪切过程中,铝合金7050-T7451表现出一定的应变率敏感性和正应变率强化效应。基于材料的成形方向影响规律,构建包含应变率敏感函数项的修正的Johnson-Cook本构模型,并对比验证修正模型与试验数据的结果,证明了修正的、包含应变率函数项的材料本构模型更适用于描述不同成形方向下的材料动态力学性能,该模型能够为建立精确可靠的各向异性材料仿真模型提供数据支持。  相似文献   

5.
This paper presents a modified split-Hopkinson pressure bar (SHPB) technique. The dynamic stress-strain behaviors were estimated at room temperature and subzero temperature to −75°C by using the conventional SHPB and compared with a modified SHPB technique. A computer simulation using a finite element algorithm is also performed to study the dynamic material responses. Furthermore, we attempt to find a proper material constitutive law by using the simulation process. It is suggested that the modified SHPB test used in this study can be successfully utilized to offer an experimental condition of a higher strain rate than that obtained from the conventional SHPB test.  相似文献   

6.
利用同步组装的高温分离式Hopkinson压杆试验装置,对TC4-DT钛合金材料分别进行了常温下不同应变率(930~9700s-1)和应变率为5000s-1时不同温度下(20~800℃)的动态力学性能测试,获得了各种冲击载荷下的应力-应变曲线。试验数据表明,TC4-DT材料具有应变率增塑效应且存在着临界应变率值,当应变率高于此值时应变率敏感性增强明显,此外随着材料加热温度的升高,软化效应减弱。利用试验所得的数据拟合了基于Power-Law和Johnson-Cook两种热-黏塑性本构方程且获得这两种动态本构模型参数,并将所得的两种拟合曲线与试验所得数据进行对比分析,结果表明两曲线吻合度都较好,此外还对这两种曲线的拟合精度进行对比,对比结果表明两种模型的拟合误差相差不大,但是Power-Law模型拟合精度要略优于Johnson-Cook模型的拟合精度。  相似文献   

7.
利用MMS-200型热力模拟试验机研究了10B06冷镦钢连铸坯在750~1 100℃、应变速率为0.01~20s-1条件下的热压缩流变行为,并且通过线性回归确定了该钢的应变硬化指数以及热激活能,获得了其在变形条件下的流变应力本构方程。结果表明:该钢在热压缩变形时的流变软化行为是动态再结晶、动态回复与加工硬化联合作用的结果;当变形温度较低、应变速率较小时,软化效应以动态再结晶为主;而当变形温度较高、应变速率较大时,软化效应是动态再结晶和动态回复共同作用的结果;该钢的流变应力可采用Zener-Hollomon参数的函数来描述,其热激活能为220.132 3kJ.mol-1。  相似文献   

8.
Cupronickel B10—an important material used in aircraft carriers—exhibits excellent electrochemical and mechanical properties, such as high corrosion resistance and weldability. The Split-Hopkinson pressure bar (SHPB) test is a classical method to obtain the dynamic mechanical properties of solid materials. However, the deformation temperature has long been ignored in SHPB studies, which results in low accuracy of the material constitutive model. Thus, in this study, a new method for obtained the deformation temperature was proposed and the modified material equation was validated using experimental data. Quasi-static compression and SHPB experiments were conducted with a thermocouple. The results revealed that the deformation temperature of the quasi-static tests was nearly zero, whereas that of the SHPB experiments ranged from 40 to 90 °C. Therefore, the method developed to describe the deformation temperature can be used to improve the precision of SHPB experiments, as demonstrated for the case of cupronickel B10.  相似文献   

9.
A constitutive model is critical for the prediction accuracy of a metal cutting simulation. The highest strain rate involved in the cutting process can be in the range of 10~4–10~6 s~(–1). Flow stresses at high strain rates are close to that of cutting are difficult to test via experiments. Split Hopkinson compression bar(SHPB) technology is used to study the deformation behavior of Ti-6Al-4V alloy at strain rates of 10~(–4)–10~4s~(–1). The Johnson Cook(JC) model was applied to characterize the flow stresses of the SHPB tests at various conditions. The parameters of the JC model are optimized by using a genetic algorithm technology. The JC plastic model and the energy density-based ductile failure criteria are adopted in the proposed SHPB finite element simulation model. The simulated flow stresses and the failure characteristics, such as the cracks along the adiabatic shear bands agree well with the experimental results. Afterwards, the SHPB simulation is used to simulate higher strain rate(approximately 3×10~4 s~(–1)) conditions by minimizing the size of the specimen. The JC model parameters covering higher strain rate conditions which are close to the deformation condition in cutting were calculated based on the flow stresses obtained by using the SHPB tests(10~(–4)–10~4 s~(–1)) and simulation(up to 3×10~4 s~(–1)). The cutting simulation using the constitutive parameters is validated by the measured forces and chip morphology. The constitutive model and parameters for high strain rate conditions that are identical to those of cutting were obtained based on the SHPB tests and simulation.  相似文献   

10.
以22MnB5为实验材料,在500~950℃范围内和应变速率为0.01s-1、0.1s-1、1s-1的实验条件下,采用热模拟机Gleeble-1500对硼钢进行热拉伸实验,研究了不同变形条件下硼钢的热流变行为;对拉断后的试样断面进行组织分析,阐述了不同变形条件下硼钢的组织对热流变行为变化的影响。研究表明:硼钢的热变形行为属于典型的动态回复型,其流动应力随着温度的升高而减小,随着应变速率的增大而增大,且温度对流动应力的影响更显著;在500℃、应变速率0.01s-1的条件下,硼钢高温下的热力学行为与上述规律有所差别,其流变应力高于高应变速率下的流变应力。最后根据高温拉伸实验所得数据,构建了22MnB5热变形的本构方程,以此来描述硼钢高温下的热流变行为。  相似文献   

11.
采用Gleeble-3500型热模拟试验机,分别在变形温度为873,923,973,1023,1073 K,应变速率为0.01,0.1,1,10 s-1条件下对HNi55-7-4-2合金进行等温热压缩试验,研究了该合金的高温流变行为;基于试验数据,分别采用修正Johnson-Cook(M-JC)模型和反向传播人工神经网...  相似文献   

12.
对铁基高温合金GH2132进行了准静态压缩试验和分离式霍普金森压杆(SHPB)试验,获得了该材料在不同温度和应变率下的应力应变曲线,分析了其力学行为.GH2132在准静态压缩过程中出现加工硬化且没有明显的屈服阶段.在SHPB试验中,GH2132有明显的温度软化效应,当应变率在4000~8000 s-1之间时表现出应变率...  相似文献   

13.
采用微型分离式霍普金森压杆实验系统对TC17钛合金在高温、高应变率条件下的动态力学行为进行研究,测试材料的应力应变行为,分析实验温度、应变率和应变对其动态力学性能的影响规律。实验结果表明:当应变率为3000s-1时,TC17钛合金表现出明显的应变硬化效应,但在高温、高应变率条件下其应变硬化效应明显减弱;TC17钛合金具有应变率强化效应,但在温度升高过程中其应变率敏感性随着实验温度的升高而先减小后增大;实验温度对TC17钛合金的动态压缩力学行为的影响非常明显,温度敏感性因子随温度的升高大幅度增大。  相似文献   

14.
通过分离式霍普金森压杆(SHPB)动态压缩试验研究了体积分数为45%的铝基碳化硅颗粒增强复合材料(SiCp/2024Al)在大应变率和变形温度范围内的热变形行为,分析了热变形参数(变形温度和应变率)对流动应力的影响。研究发现:变形温度和应变率对复合材料的流变应力、抗压强度、弹性模量、应变率敏感性有显著影响;抗压强度、弹性模量随变形温度的增大而减小,而抗压强度、弹性模量、应变率敏感性随应变率的增大出现了拐点。根据试验结果,结合热力学和统计损伤力学理论,建立了描述SiCp/2024Al复合材料动态热变形行为的连续损伤本构模型,预测的流动应力与试验结果吻合较好,表明所建立的模型能够准确地描述SiCp/2024Al复合材料动态热变形行为。  相似文献   

15.
高强铝合金热成形工艺条件下的变形行为表征,需要在考虑温度、应变速率及应变影响的基础上结合微观演化行为建立热塑性本构关系。总结了高强铝合金热塑性变形本构关系相关研究成果。研究结果表明:广泛应用的唯象本构模型通过修正模型参数可以充分耦合应变、温度及应变速率作用,并准确地预测不同变形条件下的流动应力,然而缺乏对变形机制的明确解释,使得唯象本构模型对试验温度、应变速率变化范围较大以及试验条件范围外的变形行为预测精度难以得到保证;基于物理意义的本构模型能够模拟位错密度、晶粒尺寸及动态再结晶等微观演化过程,对流动应力进行精确计算,展现了强大的宏微观变形预测能力,是高强铝合金热塑性变形本构关系的研究趋势。  相似文献   

16.
通过SHPB实验得出在不同温度.不同应变率下的高铬铸铁Cr15Mo的应力-应变曲线,选用Johnson—Cook材料模型确定材料的本构关系,将此本构关系输入到Abaqus有限元分析软件来进行高铬铸铁的高速切削加工的仿真与模拟。  相似文献   

17.
6061-T651铝合金动态力学性能及J-C本构模型的修正   总被引:3,自引:1,他引:2  
为合理描述6061-T651铝合金的应力流动行为,利用万能材料试验机和霍普金森压杆,分别进行准静态、高温和高应变率下的材料力学性能测试,获得材料在不同条件下的应力应变曲线。基于试验结果,修正Johnson-Cook本构模型得到MJC(Modified Johnson-Cook)模型,并标定MJC模型各项参数。为校验MJC模型及参数的有效性,利用一级气炮发射直径为5.95 mm的圆柱弹体冲击刚性靶的Taylor杆试验以及直径为12.68 mm的刚性弹撞击厚度为2 mm靶板的试验。最后,采用ABAQUS/Explicit有限元软件建立Taylor杆和弹靶冲击试验的三维模型,基于MJC本构模型进行Taylor杆冲击、以及结合MMC(Modified Mohr-Coulomb)断裂准则进行弹靶冲击的数值模拟计算。研究结果表明,修正的MJC本构模型能够有效地描述6061-T651铝合金材料在大应变、高应变率和高温下材料的应力流动行为和变形行为。  相似文献   

18.
利用Gleeble-3500型热模拟试验机对4Cr5MoSiV1热作模具钢进行单道次等温压缩试验,研究了其在变形温度750~1050℃,应变速率0.001~0.1 s-1条件下的热变形行为,并观察变形后的显微组织;根据试验得到的真应力-真应变曲线,构建了0.3真应变下的Arrhenius高温本构模型,并在动态材料模型基...  相似文献   

19.
This paper proposes an analytical cutting forces model based on an extension of the Oxley's machining theory (OMT) to high-speed machining of ductile and hard metals. In this model, the materials' behavior was modeled using the Marusich's constitutive equation (MCE). Furthermore, The OMT was modified to be able to capture the effects of the cutting tool edge radius and the burnishing phenomenon by implementing a variable rake angle equation and the Briks criterion, respectively. The predictive model was validated using experimental data obtained during the orthogonal machining of two aluminum alloys (AA6061-T6 and AA7075-T651) and induction-hardened AISI4340 steel (58-60 HRC). The results showed that the predicted and experimental cutting forces were in reasonable agreement for all tested materials. The strain rate constant in the primary shear zone (C0) was found to be significantly sensitive to the cutting conditions and work material, and its effect on the predicted data was highlighted and discussed in depth. On one hand, it was found that AA6061-T6 is less sensitive to the strain rate compared to the AA7075-T651. On the other hand, all tested materials were found to be more sensitive to the strain rate at low cutting speeds and/or cutting feeds.  相似文献   

20.
Modeling of ductile fracture using the dynamic punch test   总被引:1,自引:0,他引:1  
Many models have been proposed for simulating events at quasi-static and dynamic rates. However, the Johnson–Cook constitutive model had been the workhorse for engineers and analysts when simulating such events, and it is readily available in the increasingly widespread numerical packages. Johnson and Cook also suggested a generalized failure model to be used with their constitutive model, but the challenge has always been in easily determining the correct parameters for these models. In this study, a procedure for determining the Johnson–Cook constitutive and, simplified, failure model parameters for three materials with specific importance in the aerospace industry, aluminum 6061-T6, titanium Ti-6Al-4 V and austenitic, nitrogen-strengthened, stainless steel (Nitronic 33) is proposed. Quasi-static and split Hopkinson pressure bar (SHPB) shear punch experiments were used to assess the materials’ ductility, while the quasi-static and SHPB compression experiments were used to determine the materials’ response. The laboratory results coupled with ABAQUS/Explicit simulations provided a tool for determination and validation of the models’ parameters for each material. While the use of the Johnson–Cook model with the proposed simplified failure model proved adequate for aluminum and titanium, the same could not be concluded for nitronic partly due to the intrinsic characteristics of this material and the multiplicative form of the Johnson–Cook model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号