首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
目的获得具有优异柔性与抗菌活性的壳聚糖复合膜。方法以明胶为增强聚合物,甘油为增塑剂,采用流延成型法构筑柔性壳聚糖薄膜,并通过浸泡硝酸铜/氢氧化钠溶液原位负载纳米氧化铜,以提高薄膜的抗菌性。研究壳聚糖同明胶的质量比及甘油添加量对复合膜力学性能的影响,考察硝酸铜浓度对复合膜水蒸气透过率、透光率、抗菌性的影响。通过红外光谱(FT-IR)和X-射线衍射(XRD)对薄膜结构进行表征。结果当壳聚糖与明胶的质量比为5∶5,甘油质量分数为20%时,复合膜拉伸强度为(3.23±0.31)MPa,断裂伸长率为(159.88±4.14)%。增加硝酸铜浓度,壳聚糖/明胶/氧化铜复合膜的水蒸气透过率先降低后增加,透光率逐渐降低,对金黄色葡萄球菌与大肠杆菌的抗菌活性逐渐增强。当硝酸铜浓度为0.05 mol/L时,复合膜的最佳水蒸气透过率为(30.60±4.02)g·mm/(m2·s·kPa),最佳透光率为(72.61±8.13)%;当硝酸铜浓度为0.25 mol/L时,复合膜对大肠杆菌的最大抑菌圈直径为(27.0±3.0)mm;当硝酸铜浓度为0.30mol/L时,复合膜对金黄色葡萄球菌的最大抑菌圈直径为(26.1±3.1)mm。结论制备得到的壳聚糖/明胶复合膜具有优异的柔性和抗菌活性,在食品包装保鲜领域具有潜在的应用前景。  相似文献   

2.
采用溶胶-凝胶法制备纳米SiO_2微球并对其接枝改性,与壳聚糖/淀粉溶液复合后应用于圣女果保鲜包装中。通过扫描电镜、红外光谱、粒径分析等表征,考察纳米SiO_2成球工艺参数和接枝改性效果;并研究了添加不同质量分数的改性纳米SiO_2微球对壳聚糖/淀粉/纳米SiO_2复合膜溶液保鲜效果的影响。结果表明:添加5 m L浓氨水、2.8 m L正硅酸四乙酯、40 m L乙醇并通过缓慢滴加的方式制备得到的微球粒径均一、分散性好;经硅烷偶联剂KH550接枝改性后的纳米SiO_2微球,能够改善复合膜的多项性能;当添加质量分数为3%的改性纳米SiO_2微球时,壳聚糖/淀粉/纳米SiO_2复合膜的保鲜效果较好。  相似文献   

3.
以石蜡和壳聚糖作为囊芯材料,以明胶作为壁材,制备明胶-壳聚糖-纳米SiO_2复合微胶囊。通过油水比、壳聚糖和明胶中分别引入纳米SiO_2等因素的调节,研究了其对微胶囊性能、结构的影响。采用光学显微镜、扫描电子显微镜(SEM)对微胶囊形貌等微观结构进行表征。结果表明,油水比为3∶1时,制备的微胶囊结构和性能较好,在此基础上分别以不同的方式在壳聚糖和明胶中引入不同粒径的纳米SiO_2。结果表明,未引入纳米SiO_2制备的微胶囊呈球形结构,部分为多核微胶囊;当在壳聚糖或明胶中加入SiO_2时,微胶囊壁材出现多孔结构,球形度降低,随着SiO_2量的增加,微胶囊壳层孔状结构增多,微胶囊的热损失率也随之增大;不同粒径的纳米SiO_2无论引入壳聚糖还是明胶中,微胶囊的热损失率都是随着SiO_2含量的增加而增大;较大粒径的纳米SiO_2引入后微胶囊热损失率小于小粒径纳米SiO_2引入后微胶囊的热损失率。  相似文献   

4.
采用流延成型法制备了不同用量聚乙二醇200(PEG200)和聚乙二醇800(PEG800)增塑的明胶/壳聚糖复合膜,研究了PEG对明胶/壳聚糖复合膜吸湿性能、透水汽性和拉伸性能的影响,用X射线衍射(XRD)法分析了复合膜的结晶行为。结果表明,PEG的种类和用量会影响明胶/壳聚糖复合膜的结构和性能。在水活度较低时,PEG会降低复合膜的初始吸湿速率和吸湿能力;水活度较高时,PEG会提高复合膜的初始吸湿速率和吸湿能力。PEG能降低明胶/壳聚糖复合膜的单分子层吸附值和拉伸强度,增大复合膜的透水汽性、断裂伸长率及结晶度。  相似文献   

5.
目的 以壳聚糖、明胶、苹果多酚为基材,制备一种具有优良性能的绿色环保复合材料。方法 用溶液共混法制备壳聚糖/明胶/苹果多酚共混膜,用土埋法测试其降解性,用红外光谱(FT–IR)、X射线衍射仪(XRD)、扫描电镜(SEM)等对其进行表征,并对其力学性能等进行测试。结果 壳聚糖/明胶/苹果多酚复合膜的机械强度随苹果多酚的添加量的增加先变大后减小,当苹果多酚添加量为1%时有较好的拉伸强度;壳聚糖、明胶、苹果多酚三者具有良好的相容性;复合膜生物降解性良好。结论 引入合适比例的苹果多酚可有效提升复合膜的力学性能,制得的可降解复合膜在绿色食品包装领域有广泛的应用前景。  相似文献   

6.
采用研究广泛的壳聚糖及明胶作为原材料,以京尼平作交联剂,制备具有良好生物相容性的壳聚糖/明胶复合膜。对该复合膜进行化疗药拓扑替康的负载以及放射性碘131标记,测试复合膜的含药量、药物释放、体外降解、碘标记率。把复合膜植入到KM小鼠腹腔中以探究复合膜的体内降解及生物相容性,并对该KM小鼠进行SPECT、CT成像。实验表明,复合膜已实现放化疗药物的同时载药;复合膜体外降解缓慢并且持续缓释药物;通过KM小鼠腹腔植入实验可知,复合膜具备可降解性的同时生物相容性良好。  相似文献   

7.
以纳米SiO_2为模板,在其表面接枝聚L-谷氨酸(PLGA),以壳聚糖(CS)为大分子交联剂,构建了PLGA/CS化学交联中空纳米凝胶,研究了纳米SiO_2粒子表面接枝,纳米凝胶制备、微观形貌以及pH响应行为。以水溶性盐酸米托蒽醌(MTX)为模型药物,研究了PLGA/CS纳米凝胶的载药与释药性能。结果表明,PLGA在SiO_2表面成功接枝;PLGA/CS纳米凝胶呈球形,平均粒径为365 nm。冻干后纳米凝胶尺寸收缩至100 nm左右;PLGA/CS纳米凝胶具有pH响应性,随pH的提高,PLGA/CS纳米凝胶粒径先减小后增大;PLGA/CS纳米凝胶对MTX有良好的负载能力,最高载药量达41.4%。载MTX的PLGA/CS纳米凝胶在起始阶段存在一定程度突释,随后释药速度明显变缓,直到7 d后达到释放平衡,药物缓释效果良好。  相似文献   

8.
以纳米SiO_2为模板,在其表面接枝聚L-谷氨酸(PLGA),以壳聚糖(CS)为大分子交联剂,构建了PLGA/CS化学交联中空纳米凝胶,研究了纳米SiO_2粒子表面接枝,纳米凝胶制备、微观形貌以及pH响应行为。以水溶性盐酸米托蒽醌(MTX)为模型药物,研究了PLGA/CS纳米凝胶的载药与释药性能。结果表明,PLGA在SiO_2表面成功接枝;PLGA/CS纳米凝胶呈球形,平均粒径为365 nm。冻干后纳米凝胶尺寸收缩至100 nm左右;PLGA/CS纳米凝胶具有pH响应性,随pH的提高,PLGA/CS纳米凝胶粒径先减小后增大;PLGA/CS纳米凝胶对MTX有良好的负载能力,最高载药量达41.4%。载MTX的PLGA/CS纳米凝胶在起始阶段存在一定程度突释,随后释药速度明显变缓,直到7 d后达到释放平衡,药物缓释效果良好。  相似文献   

9.
采用乳化交联法制备胶原蛋白/壳聚糖/纳米SiO_2复合微球。以司班80和液体石蜡为油相,混合溶液为水相,引入硬脂酸镁(MS)作助乳化剂,以SEM、FT-IR、UV、激光粒度仪为表征手段研究了油水体积比、搅拌速率、交联剂与混合溶液体积比和纳米SiO_2对复合微球的成球性及其载药释药性能的影响。结果表明,MS的助乳化效果较好,在纳米SiO_2和混合溶液质量比为2%(wt,质量分数)时,盐酸小檗碱载药微球的载药率为15.66%,包封率为66.52%,维生素D载药微球的载药率为3.08%,包封率为48.54%。结论:制备了粒度分布集中的药物缓释微球,纳米SiO_2使微球具有更好的缓释性能,且在pH较低时不易分解,减少粘附。  相似文献   

10.
明胶-壳聚糖复合膜的制备与性能   总被引:2,自引:0,他引:2  
制备了一系列不同配比的明胶-壳聚糖复合膜,研究了壳聚糖含量对复合膜力学性能、吸湿性能的影响,通过X射线衍射和红外光谱分析了复合膜的结构。结果表明,复合膜及纯壳聚糖膜的断裂伸长率和拉伸强度均大于纯明胶膜,壳聚糖的加入可改善膜的力学性能。随壳聚糖含量的增加,复合膜的吸湿率增大。明胶与壳聚糖分子间存在较强的相互作用,与明胶共...  相似文献   

11.
以竹叶提取物作为功能性添加剂,通过流延法制备了壳聚糖/竹叶提取物复合膜,研究了复合膜的力学性能、透光率、颜色、溶胀度、溶解性、氧气透过率和抗氧化等性能。结果表明:随着竹叶提取物含量的增加,复合膜颜色加深,透光率降低;拉伸强度增加,断裂伸长率降低;溶胀度与溶解度都降低,耐水性增强;自由基清除率升高,抗氧化性增强;复合膜阻氧性较好。  相似文献   

12.
通过流延成膜法制备了不同甲壳素纳米纤维(CF)质量分数的CF/明胶(GA)/壳聚糖(CS)复合膜。利用透射电子显微镜(TEM)、扫描电子显微镜(FE-SEM)、紫外-可见光谱(UV-Vis)等对材料的结构与性质进行了研究。结果表明:低加入量CF在复合膜中分散较好,高加入量CF在复合膜中会形成团聚,CF与GA/CS之间有相对较好的相容性;随着CF含量增加,复合膜拉伸强度呈现先增加而后减小的趋势,而断裂伸长率则随着CF含量增加而持续降低;同时复合膜的水蒸气吸附率和水溶失率都随着CF含量的上升而降低。CF/GA/CS纳米复合膜表现出良好的透明性,较少CF的加入对材料透明度影响不大。  相似文献   

13.
采用戊二醛作为交联剂,采用溶液共混和表面延流法制备壳聚糖/Y2O3/聚丙烯无纺布复合膜。采用IR、DSC、SEM对复合膜进行表面结构表征;对复合膜的结合牢度以及复合膜对磷的吸附性能进行测试。结果表明:壳聚糖和Y2O3颗粒都比较均匀分散在复合膜的表面;处理后的复合膜吸热峰值没有明显变化;当壳聚糖固定时,复合膜的结合牢度随Y2O3用量的增加逐渐降低,当Y2O3用量固定时,复合膜的结合牢度随壳聚糖用量的增加逐渐增大。聚丙烯无纺布经过壳聚糖/Y2O3处理后,对磷具有一定吸附作用,吸附性能优于纯壳聚糖涂敷膜。  相似文献   

14.
以壳聚糖为基体、茶多酚(TP)为活性抗氧化物,通过流延法制备了壳聚糖/茶多酚复合膜,对复合膜的力学性能、透光率、颜色、溶胀度、溶解性、氧气透过率、抗氧化等性能进行了研究。结果表明:随着茶多酚的增加,复合膜颜色加深,透光率降低;拉伸强度增加,断裂伸长率降低;含水量、溶胀度与溶解度降低,耐水性增强;自由基清除率升高,抗氧化性增强;茶多酚含量为20%(wt,质量分数)的复合膜阻氧性能较好。  相似文献   

15.
以马来酸酐改性后的明胶(N-马来酰化明胶)(明胶-g-MA)为交联剂与N-异丙基丙烯酰胺共聚制备了一系列水凝胶。研究了交联剂用量对水凝胶溶胀性的影响,结果表明交联剂用量为45%(质量分数)时水凝胶具有最高的溶胀率,水凝胶的平衡溶胀率随温度升高逐渐降低,温敏性随缓冲液中NaCl浓度增加逐渐增强。包埋在水凝胶样品内的牛血清蛋白(BSA)具有良好的缓释效果,其累积释放率随交联剂用量增加而降低,高于相变温度时释放速度加快。  相似文献   

16.
明胶作为一种生物质材料,具有良好的成膜性能、阻氧性能。然而,明胶韧性差,遇水易溶胀等缺点在很大程度上限制其应用。文中以明胶为基体,纤维素晶须(CW)作为分散相,制备纳米纤维素/明胶生物基复合膜。采用透射电镜、扫描电镜、紫外分光光度计、溶胀及力学性能测试研究复合膜的结构与性能。结果表明,当晶须加入量为15%时,复合膜的溶胀度降低为纯明胶膜的1/4,表明纤维素晶须可改善明胶膜在水中的稳定性;当纤维素晶须含量为9%左右,不仅能改善明胶基体韧性,还提高了明胶基体的强度。  相似文献   

17.
采用正交试验方法,考察了原料的配比、交联剂的用量及交联温度等对复合材料性能的影响。较佳的制备工艺条件分别为改性天然胶乳/壳聚糖/明胶配比60/20/20,交联剂用量0.004%,交联温度60℃。随改性天然胶乳的加入,复合膜柔韧性增强,力学性能下降;壳聚糖对复合膜的力学性能贡献大于明胶。  相似文献   

18.
采用流延法制备了明胶/壳聚糖复合膜,通过对复合膜结构及力学、热学、光学等性能进行表征,探究了壳聚糖对复合膜性能的影响。结果表明:明胶与壳聚糖共混相容性较好,复合膜均一透明。通过添加壳聚糖和甘油可以明显改善明胶/壳聚糖复合膜的抗拉强度、断裂伸长率、热稳定性及吸水性能;随壳聚糖含量的增加,透明度下降,壳聚糖添加量为30%(质量分数)时,透明度为79.4%(透光率小于80%)。研究认为通过壳聚糖与甘油对明胶进行改性可以不同程度地改善明胶膜的力学性能、吸水性能,能够满足其在不同领域的应用。  相似文献   

19.
在二醛基纳米纤维素悬液中加入银氨溶液原位合成载银纳米纤维素(Ag/DNCC),以壳聚糖(CS)为成膜基底,甘油为增塑剂,加入Ag/DNCC共混流延制备载银纳米纤维素-壳聚糖(Ag/DNCC-CS)复合膜。FT-IR和XRD测试结果表明Ag/DNCC的加入没有改变CS的分子结构和结晶状态,热性能测试结果表明Ag/DNCC对提高CS的热稳定性能不显著。添加Ag/DNCC后,SEM测试结果表明Ag/DNCC-CS复合膜微观形貌致密,拉伸强度比纯CS膜提高。Ag/DNCC含量为10%(wt,质量分数)制得的Ag/DNCC-CS复合膜的拉伸强度达到72.36MPa,对大肠杆菌和金黄色葡萄球菌均有较好的抑菌效果。  相似文献   

20.
朱金龙  郑聚成  张定军 《材料导报》2021,35(16):16149-16154
本工作采用前端聚合法制备聚(N-乙烯基己内酰胺-co-N,N-二甲基丙烯酰胺)智能水凝胶,针对两种单体,即N-乙烯基己内酰胺( N-VCL)和N, N-二甲基丙烯酰胺(DMAA),研究了单体物质的量比、交联剂和引发剂用量对前端聚合参数以及共聚水凝胶性能的影响,并用阿司匹林作为模型药物,评价了共聚物水凝胶对阿司匹林的负载和缓释效果.实验表明,共聚产物具有温度敏感性,相转变温度在25~40 ℃之间,单体N,N-二甲基丙烯酰胺(DMAA)加入之后,凝胶对温度刺激的敏感性响应更为明显.随单体DMAA含量的增加,波温、波速也升高,温室溶胀率增加.当n(N-VCL) ∶ n(DMAA)=5 ∶5时,水凝胶的温敏性最好;随交联剂用量的增大,共聚凝胶室温溶胀能力、温敏性均有所降低;随引发剂用量的增加,相变温度升高.随单体DMAA比例增加,在25 ℃和37 ℃两种温度下凝胶载药量均增加,但就释药效果而言,在37 ℃下凝胶释药效率更高,总释药率也更高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号