首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的 探究温度和孔隙率对闭孔泡沫铝材料压缩力学性能和变形机理的影响。方法 将孔隙率为84.3%~87.3%的泡沫铝试件在温度25~700 ℃内进行加热处理,对处理后的试样开展准静态压缩实验。结果 在准静态压缩条件下,闭孔泡沫铝材料在不同温度加热处理后的压缩应力–应变曲线均经历了3个阶段:弹性阶段、塑性平台阶段和密实阶段。孔隙率从87.3%减小到84.3%时,其弹性模量增大了44.4 MPa,屈服强度增大了0.39 MPa,平台应力增大了0.94 MPa。孔隙率为84.3%的泡沫铝,在25 ℃时,其弹性模量为141.4 MPa、屈服强度为4.25 MPa、平台应力为4.75 MPa;当加热温度为500 ℃时,弹性模量减小到了128.0 MPa、屈服强度减小到了4.22 MPa、平台应力减小到了4.51 MPa。结论 泡沫铝的弹性模量、抗压屈服强度和平台应力均随孔隙率的增加而减小;加热温度低于500 ℃以下时,泡沫铝材料力学性能变化很小,但屈服强度和弹性模量均小幅度降低;在压缩载荷下,泡沫铝的变形破坏模式呈现出先从试件铝基体较薄弱部分产生孔壁塑性变形、孔洞坍塌,并逐渐出现断裂压缩带,直至泡沫铝孔洞完全坍塌密实。  相似文献   

2.
将丝径为100μm的不锈钢纤维松装于烧舟中,经1150℃/2h真空烧结和后续加工制备了具有孔隙度范围在70%~95%之间的金属纤维多孔板材.在MTS858材料试验机上检测了多孔板材的准静态剪切性能,重点研究了孔隙度对剪切性能的影响.结果表明,面内剪切应力-应变曲线大致分为3个阶段:应变很低情况下的线性弹性阶段、塑性变形区和应力破坏阶段;随着孔隙度的增加,不锈钢纤维多孔材料的剪切模量、屈服强度减小.  相似文献   

3.
闭孔泡沫铝缓冲性能及其变形失效机理研究   总被引:1,自引:0,他引:1  
在闭孔泡沫铝的准静态压缩实验基础上,研究不同孔隙率下的力学性能和吸能性能,分析其压缩变形机理。结果表明,闭孔泡沫铝的压缩过程存在明显的3个阶段:线弹性阶段、塑性平台阶段和致密化阶段。随着孔隙率的增大,闭孔泡沫铝的屈服强度、弹性模量和压实应力均减小。在压缩过程中,吸能效率和理想吸能效率均是先上升后下降。孔隙率对吸能效率影响较大,对最大理想吸能效率影响不大。将理想吸能效率曲线和吸能效率曲线结合可以选择合适的缓冲材料,发挥其最佳吸能特性。闭孔泡沫铝在准静态压缩条件下有良好的塑性变形能力,变形呈逐层破坏的特征。  相似文献   

4.
基于聚氨酯发泡塑料的准静态压缩和落锤冲击试验,分析其在中低应变率下的力学性能和能量吸收性能,得到了该材料的应力-应变曲线和能量吸收图,研究了不同应变率和循环静动态试验对该材料缓冲性能的影响。随着初始应变率由2.56×10-3s-1(准静态)增加至4.01×101s-1、5.08×101s-1和5.68×101s-1,材料的应力和能量吸收明显增大,应变为0.4时动态应力分别比静态应力增加了54.34%、79.35%和114.49%,所吸收的能量分别比静态增加了18.98%、30.09%和65.74%。对同一试样先后进行五次循环准静态压缩或落锤冲击试验,与首次试验相比第二、三、四、五次试验应力和能量吸收明显下降,应变为0.4时静态应力分别下降了18.48%、32.97%、36.59%和39.49%,动态应力分别下降了20.81%、28.48%、34.75%和34.75%,准静态压缩能量吸收分别下降了24.54%、37.50%、40.74%和43.52%,落锤冲击能量吸收分别下降了15.30%、24.20%、30.25%和30.96%。中低应变率下,聚氨酯发泡塑料的应变率效应十分明显,循环准静态压缩和落锤冲击效应同样十分明显。循环试验达到一定次数后,材料缓冲性能基本保持不变,可用此数据作为缓冲包装设计的依据。研究结果对于聚氨酯发泡塑料的合理缓冲包装设计有指导意义。  相似文献   

5.
发泡聚乙烯醇缓冲机理研究   总被引:1,自引:1,他引:0  
通过对不同密度的发泡聚乙烯醇进行静态压缩试验以及用扫描电镜观察不同压缩阶段泡孔结构的变化,分析了发泡聚乙烯醇的力学性能及缓冲机理。结果表明:材料静态压缩应力-应变曲线呈现线弹性、塑性屈服及密实化3个阶段;发泡聚乙烯醇不同方向力学性能的差异表明了其结构各向异性;材料的弹性模量及屈服强度与其泡孔结构有关,均会随着密度的增加而增大,材料的能量吸收效率在应变为0.55左右的区域达到最大值,具有最佳的吸能效果。最后分析了发泡聚乙烯醇压缩变形机理,其主要以孔壁弯曲变形为主,孔径很大时孔隙中流动气体对其压缩性能的影响可忽略不计。为开发不同泡孔结构发泡聚乙烯醇材料应用于各种产品的缓冲包装设计提供参考。  相似文献   

6.
闭孔泡沫铝的力学性能和吸能能力   总被引:2,自引:2,他引:0  
在闭孔泡沫铝准静态压缩试验的基础上,研究了其力学性能、吸能能力。结果表明,闭孔泡沫铝单轴压缩应力-应变曲线呈现线弹性变形、塑性平台阶段、致密化阶段3个阶段;闭孔泡沫铝的压缩强度、吸能能力随着孔隙率的增大而减小,采用Gibson-Ashby模型分析闭孔泡沫铝的压缩屈服强度,吻合良好。并在此基础上,提出可供工程使用的多孔泡沫金属吸能能力公式,为其工程应用提供理论支持。  相似文献   

7.
以不锈钢纤维毡为原料,通过配料及高温烧结得到不锈钢纤维多孔材料。对不同孔结构的不锈钢纤维多孔材料进行压缩性能测试,经计算得到能量吸收值。结果表明,随着烧结结点数量的增加,不锈钢纤维多孔材料的能量吸收能力有所提高;在丝径为8~28μm之间,改变材料的丝径,对改变纤维多孔材料的能量吸收能力影响不大;随着孔隙度的降低,纤维多孔材料的能量吸收性能有明显提高。  相似文献   

8.
以有限元分析软件 ANSYS 的 Workbench 为平台,以高孔隙率面心立方孔结构(Face centered cubic, FCC)的泡沫铝模型为对象,进行了准静态压缩和落锤冲击的有限元模拟。高孔隙率泡沫铝特指孔隙率(Porosity, Pr)在85%~90%之间的泡沫铝。已有的实验结果表明,孔隙率为90%的泡沫铝的准静态压缩下屈服平台应力值为3 MPa,当冲击应变速率在900 s-1以上时,其屈服平台的应力值稳定在7 MPa 左右;模拟结果与实验结果一致,并发现当应变速率达到35342 s-1后,泡沫铝的屈服平台应力值会再次大幅升高,达到14 MPa。根据泡沫铝压缩模拟的应力云图,揭示了不同应变速率下泡沫铝的吸能能力和变形模式的对应关系,并从结构变形的角度解释了泡沫铝的抗冲击吸能性能优于其准静态压缩的原因。  相似文献   

9.
泡沫镍力学性能的实验研究   总被引:5,自引:1,他引:4  
本研究在室温下控制位移,先以5mm/min的位移速度对泡沫镍进行了单轴拉伸、压缩实验,然后在不同应变率情况下进行了一系列单轴拉伸实验,得到了相应的应力-应变曲线,讨论了材料的应变率相关性.结果表明在普通拉伸试验范围内(准静态),改变变形速度会影响应力-应变曲线,屈服应力、强度极限随变形速度增大而下降;单轴拉伸时,应力应变关系明显分为线弹性变形、塑性变形、线性硬化和破坏4个阶段;单轴压缩时,具备其他泡沫材料受压典型应力-应变曲线的3阶段特征,即明显的弹性变形段、屈服平台段和紧实段.  相似文献   

10.
目的研究蜂窝纸板的内部气体对其静态缓冲性能的影响规律。方法通过静态压缩实验,研究在不同孔隙率的条件下蜂窝纸板的缓冲性能。结果通过静态压缩实验,得到了应力-应变曲线,对比不同孔隙率条件下的应力-应变曲线,可以观察到孔隙率越大,蜂窝纸板在压缩过程中的静态峰应力越小,蜂窝纸板越容易被压变形,并且形成的密实层越薄,其中孔隙率为0与孔隙率为100%时的应力-应变曲线变化明显,且气体泄漏不受厚长比和孔径尺寸的影响。结论在静态压缩过程中,蜂窝纸板内的气体使蜂窝纸板所能承受的应力明显增强,并且通过理论推导,得出了内含气体影响下蜂窝纸板在静态压缩过程中各个阶段的应力理论公式,为其缓冲性能的研究提供了一定的理论方法。  相似文献   

11.
在准静态单向压缩条件下,测试和分析了聚丙烯(PP)/乙烯-1-辛烯共聚物(POE)/短玻璃纤维(SGF)三元泡沫复合材料的压缩性能,考察了SGF的质量分数对压缩弹性模量、屈服强度和能量吸收特性的影响.结果表明:PP/POE/SGF泡沫复合材料的压缩应力-应变曲线具有典型的弹性变形、屈服平台和致密化三个阶段;适量SGF的引入提高了压缩弹性模量、屈服强度和吸能能力,而在研究的范围内,较高含量(20%以上)的SGF才能提高泡沫复合材料的吸能效率,其增强效果不如吸能能力明显.  相似文献   

12.
泡沫铝环氧树脂互穿相复合材料压缩力学性能   总被引:2,自引:0,他引:2       下载免费PDF全文
通过一系列准静态压缩实验研究了纯泡沫铝、 纯环氧树脂及三种不同体积分数的空心玻璃微珠(HGB)泡沫铝-环氧树脂互穿相复合材料(IPC)等五种材料压缩的变形过程和破坏形貌, 分析了其破坏机制, 并对三种IPC进行了应力松弛实验。通过绘制应力-应变曲线, 分析了其变化规律, 得出了有效弹性模量、 屈服极限等力学性能及能量吸收特性。结果表明: 三种IPC的有效弹性模量、 屈服极限及比强度、 比刚度均较纯泡沫铝有较大的提高, 泡沫铝-环氧树脂的单位体积吸能率最大, 且吸能率随空心玻璃微珠体积分数的增加而减小。泡沫铝-环氧树脂IPC有效弹性模量的预测结果与实验值较为符合。应力松弛率随空心玻璃微珠体积分数增加而增大。  相似文献   

13.
目的 研究密度与应变率对闭孔EVA泡沫材料类静态缓冲性能的影响规律。方法 基于包装用缓冲材料静态压缩试验法和能量吸收图法,对密度为80、95、106、124和180kg/m3的闭孔EVA泡沫试样在不同应变率下进行类静态压缩试验,得到应力-应变曲线,基于此进一步处理得到相应的单位体积能量吸收、能量吸收效率、缓冲系数和最大比吸能等曲线,同时绘制试样类静态压缩过程中的能量吸收图。结果 闭孔EVA泡沫材料的密度越高,密实化应变越小,最大单位体积能量吸收越大;在压缩应变相同时,应变率越大,应力、单位体积能量吸收、能量吸收效率、最大比吸能越大;得到了5种密度闭孔EVA泡沫材料的本构方程和闭孔EVA泡沫材料的能量吸收图及其斜率与应变率的关系式;通过分析密实化应变与相对密度的关系,得到相关拟合公式。结论 密度与应变率对闭孔EVA泡沫材料的缓冲性能有着非常大的影响,在一定的应力水平下会有一个最佳的密度使得刚好能吸收完能量,并保护产品不破损,该最佳密度受应变率的影响,因此可以通过能量吸收图进行相关的缓冲包装优化设计。  相似文献   

14.
开孔与闭孔泡沫铝的压缩力学行为   总被引:8,自引:0,他引:8  
康颖安  张俊彦 《材料导报》2005,19(8):122-124
研究了开孔与闭孔两种胞孔结构不同、制备工艺不同的泡沫铝在准静态压缩载荷下的压缩响应曲线.结果表明:开孔与闭孔泡沫铝压缩应力-应变曲线均具有多孔泡沫材料明显的三阶段特征,即线弹性段、塑性屈服平台段及致密段;相对密度对泡沫材料的力学性能(如杨氏模量、屈服强度)有很大影响;在准静态下,开孔泡沫铝表现出明显的应变率效应,而闭孔泡沫不如开孔敏感;泡沫铝材料表现为弱的各向异性;胞孔结构影响两种泡沫材料的压缩响应曲线.  相似文献   

15.
预压缩对蜂窝纸板能量吸收的影响   总被引:1,自引:1,他引:0  
崔艳  陈丽 《包装工程》2017,38(9):141-145
目的探究相同温湿度环境条件下,不同程度的预压缩对不同型号蜂窝纸板缓冲性能的影响。方法利用电子材料试验机对材料进行压缩,进而通过Matlab软件绘制出应力-应变曲线、静态缓冲系数曲线以及能量吸收曲线。结果预压缩限制在线弹性阶段,对蜂窝纸板各项性能无明显影响;当预压缩进入弹塑性阶段,蜂窝纸板的各项性能产生较为明显的下降;当预压缩进入塑性坍塌阶段,蜂窝纸板的各项性能显著下降,甚至丧失缓冲特性。结论随着预压缩程度的增加,蜂窝纸板静态压缩性能、静态缓冲性能及能量吸收性能都会降低。  相似文献   

16.
许威 《包装工程》2019,40(11):86-93
目的 以杨木为研究对象,研究其静动态压缩载荷作用下应力-应变曲线的变化特征,建立适合的本构模型,并对其进行描述。方法 对杨木试件进行静动态压缩加载试验,分析静动态压缩载荷作用下杨木应力-应变曲线的变化特征,构建适用于静动态压缩载荷作用下杨木的本构模型。结果 静态压缩加载杨木的应力-应变曲线分为线弹性阶段、屈服阶段和密实化阶段等3个部分,动态压缩加载杨木的应力-应变曲线分为线弹性阶段和屈服阶段等2个部分;静态压缩加载时,杨木轴向屈服应力最大,分别是径向和弦向的5.70倍和7.75倍;动态压缩加载时,当应变率从400 s-1增加到1000 s-1时,径向、弦向和轴向的屈服应力分别增加了1.51,1.59,3.12倍,杨木的屈服应力具有应变率敏感性;采用包含应变率影响的本构方程来描述杨木在静动态压缩载荷作用下的本构关系是比较合适的。结论 杨木是一种应变率敏感材料,静动态压缩载荷作用下杨木的应力-应变曲线均表现出多孔材料的特征,将多孔材料本构模型应用于木材是可行的。  相似文献   

17.
利用分离式霍普金森压杆(SHPB)装置对三维四向编织碳纤维增强树脂基复合材料的动态压缩性能进行了研究。通过对编织角为20°、30°和45°的试验件分别进行沿纵向、横向和厚度方向的动态压缩试验,得到材料在800~2 000/s应变率范围内的应力-应变曲线,并与准静态压缩试验结果进行对比,研究了应变率、压缩方向及编织角对材料极限强度和弹性模量的影响。结合高速摄影记录的动态压缩过程,进一步分析了不同情况下材料的破坏模式与破坏过程。结果表明:应变率越高,材料的极限强度和弹性模量越大,材料在受压的三个方向上均具有一定的应变率强化效应,且高应变率下表现出比准静态压缩时更明显的脆性;编织角的改变对材料在三个方向上的动态压缩性能均有影响,其中对纵向的影响最为明显;不同方向受压时材料的失效形式不同,且准静态和高应变率下的失效形式也有区别。  相似文献   

18.
为制备高强轻质泡沫钢吸能材料,本文以430L不锈钢粉为原料、CaCl2为造孔剂,采用粉末冶金烧结-溶解法制备了孔隙率为64%~80%,孔径1~4 mm的泡沫钢.利用SEM和XRD对试样进行微观组织结构分析,并对试样进行轴向准静态压缩测试,分析讨论了孔隙率和孔形对泡沫钢压缩变形行为和吸能特性的影响,以及变形过程中孔结构变形和坍塌机理.研究表明:泡沫钢孔结构呈近球形且分布均匀,孔之间通过孔壁上的微孔形成有效连通.在压缩变形过程中,变形区首先发生在孔形不规则且孔壁较薄处,后诱发周围孔变形并形成多个变形带.泡沫钢试样压缩屈服平台应力随着孔隙率的增加而减小,当孔隙率为64.81%~78.82%时,其对应的屈服平台应力为59.37~17.04 MPa.在孔隙率相同的条件下,孔形为近球形的泡沫试样,其屈服平台应力远高于孔形不规则的试样.当应变量为40%时,孔隙率为64.81%~78.82%的泡沫钢,其单位体积的能量吸收值为23.92~7.32 MJ/m3,约为泡沫铝的5~7倍.4种不同孔隙率泡沫钢样品的理想吸能效率(I)均达0.85以上,表明泡沫钢可以作为一种理想的吸能材料.  相似文献   

19.
目的研究泡沫铝孔径(泡沫铝内部孢孔直径)对泡沫铝压缩性能的影响,并对泡沫铝、聚氨酯(PU)、泡沫铝-聚氨酯复合材料的压缩性能和吸能性能进行对比分析。分析泡沫铝孔隙率、聚氨酯含量对泡沫铝-聚氨酯复合材料压缩性能和吸能性能的影响规律。方法对试样进行准静态压缩试验。结果通过准静态压缩试验,分别得出了对应的应力-应变曲线,并通过应力-应变曲线推导出吸能-应变曲线。结论从试验所得的应力-应变曲线和吸能-应变曲线可知,泡沫铝压缩性能、吸能性能随着泡沫铝孔径的增加而变好,且在泡沫铝中加入聚氨酯形成泡沫铝-聚氨酯复合材料后,其压缩性能、吸能性能相对于单纯泡沫铝、聚氨酯有很大提升。当泡沫铝孔隙率一定时,泡沫铝-聚氨酯复合材料的压缩性能、吸能性能会随着聚氨酯含量的增加而变好。当聚氨酯含量一定时,泡沫铝-聚氨酯复合材料的压缩性能、吸能性能会随着泡沫铝孔隙率的减小而变好。  相似文献   

20.
以410L和430L不锈钢粉为基体,以CaCl2为造孔剂,采用粉末冶金烧结溶解法制备出不同孔隙率的410L和430L泡沫钢并分析比较其组织和性能。结果表明:410L和430L泡沫钢的基体组织都是α-Fe;在相同的腐蚀条件下430L不锈钢的抗腐蚀性更强;在烧结过程中410L泡沫钢孔壁表面的氧化程度比430L泡沫钢严重;在准静态压缩变形过程中孔隙率为73%~83%的410L泡沫钢屈服应力为22.06~5.45 MPa,相同孔隙率的430L泡沫钢其屈服应力为56.77~10.44 MPa,430L泡沫钢的抗压强度是410L泡沫钢的2~3倍;应变量为50%时,孔隙率为73%~83%的410L泡沫钢单位体积的能量吸收值为6.12~2.90 MJ/m3。应变量为50%时,孔隙率为72%~83%的430L泡沫钢其单位体积的能量吸收值为40.35~8.25 MJ/m3。430L泡沫钢的单位体积能量吸收值约为410L泡沫钢的3~5倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号