首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The propagation and termination rate coefficients for bulk polymerization of the butyl acrylate dimer (BA dimer) are determined by pulsed laser techniques. The rate coefficient for propagation, kp, is deduced for temperatures from 20 to 90 °C via the pulsed laser polymerization-size exclusion chromatography (PLP-SEC) method at pulse repetition rates between 1 and 10 Hz. The Arrhenius parameters were found to be: EA(kp) = (34.2 ± 1.0) kJ mol−1 and A(kp)/L mol−1 s−1 = (1.08 ± 0.49) × 107 L mol−1 s−1. The termination rate coefficient, kt, has been measured via SP-PLP-ESR, single pulse-pulsed laser polymerization in conjunction with time-resolved electron spin resonance detection of radical concentration. The resulting Arrhenius parameters as deduced from the temperature range −15 to +30 °C are: EA(〈kt〉) = (22.8 ± 3.7) kJ mol−1 and log(A/L mol−1 s−1) = 10.6 ± 1. The chain-length dependence of kt was studied at 30 °C. For short chains a significant dependence was found which may be represented by an exponent α = 0.79 in the power-law expression kt(i) = kt0i−α.  相似文献   

2.
Thermal hydrocracking and catalytic hydrocracking over NiMo/γ-Al2O3 of a pentane-insoluble asphaltene were conducted in a microbatch reactor at 430 °C. The experimental data of asphaltene conversion fit second-order kinetics adequately, to give the apparent rate constants of 2.435 × 10−2 and 9.360 × 10−2 wt frac−1 min−1 for the two processes respectively. A three-lump kinetic model is proposed to evaluate rate constants of parallel reactions from asphaltenes to liquid oil (k1) and to gas + coke (k3), and consecutive reaction from liquid to gas + coke (k2). The evaluated k1 is 2.430 × 10−2 and 9.355 × 10−2 wt frac−1 min−1, k2 is 2.426 × 10−2 and 6.347 × 10−3 min−1, and k3 is 5.416 × 10−5 and 4.803 × 10−5 wt frac−1 min−1 for asphaltenes hydrocracking in the presence or absence of the catalyst, respectively. Analysis of selectivity shows that the catalytic hydrocracking process promotes liquid production and inhibits coke formation effectively.  相似文献   

3.
Shane A. Seabrook 《Polymer》2005,46(23):9562-9573
The kinetics of acrylamide (AAm) free radical polymerization at low conversion of monomer to polymer in the aqueous phase was investigated at 50 °C using γ-radiolysis relaxation, which is sensitive to radical-loss processes. The values of the termination rate coefficients for AAm ranged from 8×106 to 3×107 M−1 s−1 as the weight fraction of polymer ranged from 0.002 to 0.0035, which is significantly lower than the low-conversion values for monomers such as styrene (2×108 M−1 s−1) and methyl methacrylate (4×107 M−1 s−1) in organic media. These can be quantitatively explained by applying a chain-length-dependent model of free-radical polymerization kinetics [Russell GT, Gilbert RG, Napper DH. Macromolecules 1992;25:2459. [19]] in which termination kinetics are expressed in terms of a diffusion-controlled encounter of radicals which ultimately yields an expression for the chain-length-averaged termination rate coefficient, 〈kt〉. The lower 〈kt〉 for AAm arises due to a combination of the high kp value, promoting rapid formation of slower terminating long chains, and the slow diffusion of short propagating chains, relative to other common monomers. The chain transfer to monomer constant for AAm in water at 50 °C, CM, was estimated using the chain-length-distribution method with correction for band-broadening [Castro JV, van Berkel KY, Russell GT, Gilbert RG. Aust J Chem 2005;58:178. [21]] and found to be 1.2×10−4 (±10%). The diffusion characteristics for AAm were adapted from those obtained for a similar aqueous system (hydroxyethyl methacrylate) together with a 0.5 exponent for the power law dependence on penetrant degree of polymerization at zero weight fraction polymer. This provides an adequate fit to the 〈kt〉 data. This is the first application of the chain-length-dependent model to describe experimental termination rate coefficients for an aqueous system at low conversion to polymer. The result that the experimental termination rate coefficients can be reproduced with an a priori model with physically reasonable parameters supports the physical assumptions underlying that model.  相似文献   

4.
Fabio Fabri  Wanda de Oliveira 《Polymer》2006,47(13):4544-4548
Half-sandwich samarium(III) diketiminate bromide was successfully synthesized and was shown to be active in methyl methacrylate (MMA) polymerization. The effects of temperature, polymerization time and catalyst concentration were studied. Activities of ca. 18 kg of polymethacrylate (PMMA) per mol of samarium per hour were obtained under optimum conditions (0 °C and a MMA/catalyst molar ratio of 100/1), giving a polymer with a molar mass Mn>24,000 g mol−1 and a molar mass distribution (Mw/Mn)<1.4. After 1 h of polymerization, conversions of MMA as high as 96% were observed.  相似文献   

5.
A pentane-insoluble asphaltene was processed by thermal cracking and catalytic hydrocracking over NiMo/γ-Al2O3 in a microbatch reactor at 430 °C. Kinetic analysis shows that the first-order kinetics fits the data of conversion in reaction times ≤ 30 min approximately, but deviates from the data of times over 30 min significantly; whereas the second-order kinetics fits the data of the reaction times up to 60 min adequately, to give the apparent rate constants of 1.704 × 10−2 and 9.360 × 10−2 wt frac−1min−1 for the two cracking processes. Furthermore, a three-lump kinetic model is proposed to include parallel reactions of asphaltenes to produce liquid oil (k1) and gas + coke (k3), and consecutive reaction from liquid to gas + coke (k2). The evaluated value of k1 is 1.697 × 10−2 and 9.355 × 10−2 wt frac−1min−1, k2 is 3.605 × 10−2 and 6.347 × 10−3 min−1 , and k3 is 6.934 × 10−5 and 4.803 × 10−5 wt frac−1min−1 for asphaltenes thermal cracking and catalytic hydrocracking, respectively. Selectivity analysis shows that the catalytic hydrocracking process promotes liquid production and inhibits coke formation effectively.  相似文献   

6.
A multi-walled carbon nanotubes (MWCNTs) modified carbon ionic liquid electrode (CILE) was fabricated and used to investigate the electrochemical behavior of guanosine. CILE was prepared by mixing hydrophilic ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIMBF4), graphite powder and liquid paraffin together. The fabricated MWCNTs/CILE showed great electrocatalytic ability to the oxidation of guanosine and an irreversible oxidation peak appeared at 1.067 V (vs. SCE) with improved peak current. The electrochemical behavior of guanosine on the MWCNTs/CILE was carefully studied by cyclic voltammetry and the electrochemical parameters such as the charge transfer coefficient (α) and the electrode reaction standard rate constant (ks) were calculated with the result as 0.66 and 2.94 × 10−4 s−1, respectively. By using differential pulse voltammetry (DPV) as the detection method, a linear relationship was obtained between the oxidation peak current and the guanosine concentration in the range from 1.0 × 10−7 to 4.0 × 10−5 mol/L with the detection limit as 7.8 × 10−8 mol/L (3σ). The common coexisting substances showed no interferences to the guanosine detection and the modified electrode showed good ability to distinguish the electrochemical response of guanosine and adenosine.  相似文献   

7.
The activation-deactivation equilibrium of nitroxide-controlled radical polymerization of styrene at 123 °C was investigated. For this purpose the reaction solution was examined time dependently during the initial phase of the polymerization by using an SEC column combination providing a very good separation of the low-molecular weight species. By time-dependent measurement of the alkoxyamine concentration the activation rate of the alkoxyamines PhEt-TIPNO (N-tert-butyl-N-(2-methyl-1-phenyl-propyl)-O-(1-phenyl-ethyl)-hydroxylamine) kact = 3.2 × 10−3 s−1 and PhEt-BIPNO (N-tert-butyl-N-(1-isopropyl-2-methyl-propyl)-O-(1-phenyl-ethyl)-hydroxylamine) kact = 6.4 × 10−3 s−1 can be determined directly.Considering the Persistent Radical Effect theory, the measurement of the free nitroxide concentration allows to determine the pseudo-equilibrium constant of dissociation/combination between dormant and active species for polystyryl-TIPNO and polystyryl-BIPNO, K = 7.5 × 10−9 mol/L and 1.08 × 10−8 mol/L, respectively.  相似文献   

8.
Diblock copolymers of methyl methacrylate (MMA) with 2-ethylhexyl, butyl, ethyl or tert-butyl acrylate (EtHA, BuA, EtA, t-BuA) have been prepared by the ligated anionic polymerization initiated with methyl 2-lithioisobutyrate (MIB-Li) in the presence of an excess of Li tert-butoxide (t-BuOLi) in toluene/THF mixture at −60 or −78 °C. The copolymers, prepared at −60 °C, show MWD with a hint of bimodality, indicating partial deactivation of the living PMMA upon addition of acrylic monomer. At −78 °C, the extent of this deactivation is distinctly lower, the formed block copolymers, in particular, poly(MMA-b-EtHA), have unimodal MWD and exhibit tails only in the lower-molecular-weight region. Poly(MMA-b-EtHA)s were extracted with acetonitrile dissolving PMMA; very small parts of the crude products dissolved, whereas prevailing parts remained as solids documenting thus formation of block copolymer in a high yield. Surprisingly, the highest amount of self terminated PMMA was found in block copolymerization of MMA with t-BuA at both the temperatures, the products of which had clearly bimodal MWDs. This finding is shortly discussed on the basis of relatively slow propagation of t-BuA in comparison with EtHA, BuA and EtA.  相似文献   

9.
An aliphatic quaternary ammonium salt which has a methoxyethyl group on the nitrogen atom formed an ionic liquid (room temperature molten salt) when combined with the tetrafluoroborate (BF4) and bis(trifluoromethylsulfonyl)imide [TFSI; (CF3SO2)2N] anions. The limiting oxidation and reduction potentials, specific conductivity, and some other physicochemical properties of the novel ionic liquids, N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium tetrafluoroborate (DEME-BF4) and DEME-TFSI have been evaluated and compared with those of 1-ethyl-3-methylimidazolium tetrafluoroborate. DEME-BF4 is a practically useful ionic liquid for electrochemical capacitors as it has a quite wide potential window (6.0 V) and high ionic conductivity (4.8 mS cm−1 at 25 °C). We prepared an electric double layer capacitor (EDLC) composed of a pair of activated carbon electrodes and DEME-BF4 as the electrolyte. This EDLC (working voltage ∼2.5 V) has both, a higher capacity above room temperature and a better charge-discharge cycle durability at 100 °C when compared to a conventional EDLC using an organic liquid electrolyte such as a tetraethylammonium tetrafluoroborate in propylene carbonate.  相似文献   

10.
This work evaluates the volumetric mass transfer coefficient (kLa), the gas hold-up (?) and the mixing time (tm) as a function of superficial gas velocity (UG) in a flat-panel photobioreactor (PBR) with high light path. CO2 utilization efficiency and volumetric power consumption (P/V) were also evaluated. A 50 L working volume photobioreactor was developed, 0.67 m in length, 0.57 m in height and 0.15 m in width (light path). The height-width ratio was 3.8, which is lower than reported in most PBRs. Initially, experiments were performed with air and tap water (biphasic system) and, subsequently, using a Spirulina sp. culture (triphasic system: air, culture medium, cells). Minimum and maximum superficial gas velocity values were 5 × 10−5 and 8.4 × 10−3 m s−1, respectively. Maximum values for kLa and ? were 20.34 h−1 (0.0057 s−1) and 0.033 in the biphasic system, and 31.27 h−1 (0.0087 s−1) and 0.065 in the triphasic system. CO2 utilization efficiency was 30.57%. Results indicate that the hydrodynamic and mass transfer characteristics of this photobioreactor are more efficient than those reported elsewhere for tubular and other flat-plate PBRs, which opens the possibility of using PBRs with higher light paths than yet proposed.  相似文献   

11.
Hydrogen sulfide (H2S) is currently removed from gaseous effluents by chemical scrubbing using water. Chlorine is a top-grade oxidant, reacting with H2S with a fast kinetic rate and enhancing its mass transfer rate. To design, optimize and scale-up scrubbers, knowledge of the reaction kinetics and mechanism is requested. This study investigates the H2S oxidation rate by reactive absorption in a mechanically agitated gas–liquid reactor. Mass transfer (gas and liquid sides mass transfer coefficients) and hydrodynamic (interfacial area) performances of the gas–liquid reactor were measured using appropriated physical or chemical absorption methods. The accuracy of these parameters was checked by modeling the H2S absorption in water without oxidant. A sensitivity analysis confirmed the robustness of the model. Finally, reactive absorption of H2S in chlorine solution for acidic or circumneutral pH allowed to investigate the kinetics of reaction. The overall oxidation mechanism could be described assuming that H2S is oxidized irreversibly by both hypochlorite anion ClO (k = 6.75 × 106 L mol−1 s−1) and hypochlorous acid ClOH (k = 1.62 × 105 L mol−1 s−1).  相似文献   

12.
Elanio A. Medeiros 《Fuel》2011,90(4):1696-1699
The rate constants for the quenching of biacetyl phosphorescence by a series of conjugated dienes were measured. 1,3-cyclohexadiene (kqP = 2.94 × 109 s−1 mol−1 L), 2,5-dimethyl-2,4-hexadiene (kqP = 1.91 × 109 s−1 mol−1 L), 2,4-dimethyl-1,3-pentadiene (kqP = 1.78 × 108 s−1 mol−1 L), 3-methyl-1,3-pentadiene (kqP = 1.22 × 108 s−1 mol−1 L), 2,4-hexadiene (kqP = 1.35 × 108 s−1 mol−1 L) and trans-2-methyl-1,3-pentadiene (kqP = 3.84 × 108 s−1 mol−1 L). Cyclooctene also quenched biacetyl phosphorescence but with a lower rate (kqP = 1.97 × 107 s−1 mol−1 L). Quenching was not observed with 1-methylnaphthalene. Since conjugated dienes quench biacetyl phosphorescence preferentially, this method was studied using gasoline samples with known diene composition. A good correlation was found between the rate of quenching of biacetyl by the gasoline samples and the quantity of conjugated dienes present.  相似文献   

13.
A new electrochemical method was proposed for the determination of thymine, which relied on the oxidation of thymine at a carbon ionic liquid electrode (CILE) in a pH 5.0 Britton-Robinson buffer solution. CILE was fabricated by using ionic liquid 1-(3-chloro-2-hydroxy-propyl)-3-methylimidazole acetate as the binder, which showed strong electrocatalytic ability to promote the oxidation of thymine. A single well-defined irreversible oxidation peak appeared with adsorption-controlled process and enhanced electrochemical response on the CILE, which was due to the presence of high conductive ionic liquid on the electrode. The reaction parameters of thymine were calculated with the electron transfer coefficient (α) as 0.27, the electron transfer number (n) as 1.23, the apparent heterogeneous electron transfer rate constant (ks) as 6.87 × 10−6 s−1 and the surface coverage (ГT) as 5.71 × 10−8 mol cm−2. Under the selected conditions the oxidation peak current was proportional to thymine concentration in the range from 3.0 to 3000.0 μM with the detection limit as 0.54 μM (3σ) by differential pulse voltammetry. The proposed method showed good selectivity to the thymine detection without the interferences of coexisting substances.  相似文献   

14.
Two pyridylphosphine ligands, 2-(diphenylphosphino)pyridine (DPPP) and 2-[(diphenylphosphino)methyl]pyridine (DPPMP), were investigated as complexing ligands in the iron-mediated atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) and styrene with various initiators and solvents. In studies of their ATRP behavior, the FeBr2/DPPP catalytic system was a more efficient ATRP catalyst for the MMA polymerization than the other complexes studied in this paper. Most of these systems were well controlled with a linear increase in the number-average molecular weights (Mn) vs. conversion and relatively low molecular weight distributions (Mw/Mn = 1.15-1.3) being observed throughout the reactions, and the measured molecular weights matched the predicted values with the DPPP ligand. The polymerization rate of MMA attained a maximum at a ratio of ligand to metal of 2:1 in p-xylene at 80 °C. The polymerization was faster in polar solvents than in p-xylene. The 2-bromopropionitrile (BPN) initiated ATRP of MMA with the FeX2/DPPP catalytic system (X = Cl, Br) was able to be controlled in p-xylene at 80 °C. The polymerization of styrene was able to be controlled using the PECl/FeCl2/DPPP system in DMF at 110 °C.  相似文献   

15.
Yaodong Liu  Dewu Long  Guorui Zhang 《Polymer》2005,46(19):8403-8409
Radiation induced polymerization of styrene (St), methyl methacrylate (MMA) and n-butyl methacrylate (BMA) is carried out in a room temperature ionic liquid (RTIL), [Me3NC2H4OH]+[ZnCl3], and in its mixed solutions with THF. The presence of ionic liquid (IL) leads to a significant increase in monomer conversion and polymer's molecular weight. Molecular weight distribution (MWD) of resulting polymer varies with the IL fraction in the RTIL/THF solutions and is also dependent on the monomer used. For polystyrene (PSt) and poly(n-butyl methacrylate) (PBMA), multi-modal broad MWD is observed at IL >50 v% while single-modal narrow MWD is observed at IL <40 v%. For poly(methyl methacrylate) (PMMA), however, nearly a single-modal MWD is observed at THF >20 v%. The measured miscibility of polymer with RTIL is in the order: PMMA>PBMA>PSt. Here we propose that the difference in MWD is due to the inhomogeneous nature of the ionic liquid in micro-region and the immiscibility of polymer with medium.  相似文献   

16.
Polymer electrolytes based on poly(ethylene glycol) dimethyl ether (PEGdME) and the ionic liquid (IL) 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim]PF6) have been prepared and characterized by different techniques. Coordination of the IL by the polymer occurs mainly in the amorphous phase. This finding was correlated with previous theoretical investigations of a similar model for polymer electrolytes based on poly(ethylene oxide), PEO, and IL. It has been obtained ionic conductivity σ ∼ 10−3 S cm−1 for the polymer electrolyte with 35 wt% of IL at 100 °C. The same order of magnitude for σ was obtained by molecular dynamics simulation of PEO/IL. This work demonstrates consistency between experimental and theoretical results for polymer electrolytes containing ionic liquids.  相似文献   

17.
T. Jiang 《Electrochimica acta》2007,52(13):4487-4496
The kinetics of the oxygen reduction reaction (orr) on Cu(h k l) surfaces are investigated in perchloric acid and sulfuric acid solutions using rotating ring disk electrode (RRDCu(h k l)E). Parameters, such as reaction order, kinetic current, rate constant, Tafel slopes as well as the number of electrons transferred are determined. The variation in the activity and reaction pathway with the crystal faces in different electrolytes is related to the surface characteristics of Cu(h k l) and the structure-sensitive inhibiting effect of the adsorbed anions on their surfaces. In 0.1 M HClO4, the difference in activity is clearly observed on Cu(h k l) surfaces (Cu(1 0 0) > Cu(1 1 1) although it is relatively small). The higher activity of Cu(1 0 0) arises from its more open characteristics which may facilitate the co-adsorption of O2. On the other hand, the adsorption of oxygenated species on Cu(1 1 1) at E > −0.35 V induces a 2 e pathway; while a 4 e reduction is observed on Cu(1 0 0) in the entire potential region (−0.70 V < E < −0.10 V). In 0.5 M H2SO4, the sequence in activity between Cu(1 1 1) and Cu(1 0 0) varies with the potentials, i.e., Cu(1 0 0) is initially more active than Cu(1 1 1) at −0.35 V < E < −0.15 V, however, the reversal in the activity between Cu(1 1 1) and Cu(1 0 0) is observed at more negative potentials (−0.45 V < E < −0.35 V). The desorption of strongly adsorbed (bi)sulfate anions on Cu(1 1 1) induces the 2 e reduction via peroxide formation, however, a 4 e reduction is dominant on the Cu(1 0 0) surfaces. The major effect of (bi)sulfate anions and oxygenated species on the orr kinetics and reaction pathway on Cu(h k l) surfaces is the blocking of active copper sites for the adsorption of O2 molecules.  相似文献   

18.
Jingjing Yu 《Electrochimica acta》2008,53(19):5760-5765
Room temperature ionic liquid (RTIL) 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM·PF6) has been successfully immobilized on mesocellular siliceous foams (MSFs) by using a specific annealing method. Nitrogen adsorption/desorption isotherms and scanning electron microscopy (SEM) images reveal that most pores of MSFs are filled with the RTIL and the outer surfaces of MSFs are covered with the RTIL. When hemoglobin (Hb) is immobilized with the resulting hybrid material on a glassy carbon electrode (GCE), a pair of well-defined and quasi-reversible voltammetric peaks for Hb Fe(III)/Fe(II) is obtained. Its formal potential is −0.330 V (vs. saturated calomel electrode) in pH 7.0 phosphate buffer solution (PBS). The peak currents are much larger than those of Hb immobilized with MSFs or BMIM·PF6-MSFs mixture. This indicates that the hybrid material has stronger promotion to the direct electron transfer of Hb, which is related to the effective immobilization of BMIM·PF6 on MSFs. The electron-transfer rate constant (ks) is estimated to be 1.91 s−1. The immobilized Hb retains its native conformation and shows high electrocatalysis to the reduction of H2O2. Under the optimized experimental conditions, the catalytic current is linear to the concentration of H2O2 from 0.2 to 28 μM, and the detection limit is 8 × 10−8 M (S/N = 3). The linear range is wider than those for Hb immobilized with MSFs or BMIM·PF6-MSFs mixture. Thus, the MSFs supported RTILs hybrid material is an ideal matrix for protein immobilization and biosensor fabrication.  相似文献   

19.
Cytosine plays an important role in many biological processes since it constitutes the buildings blocks of DNA and RNA. A two-step reduction of Zn2+ ions at the dropping mercury electrode in acetic buffers at pH 4 and 5 in the presence of cytosine was examined. The measurements were performed using an impedance method in a wide potential and frequency ranges.The values of the standard rate constants ks in the both studied system decrease from 3.8 × 10−3 to 2 × 10−3 cm s−1 at pH 4 and from 5.1 × 10−3 to 2.5 × 10−3 cm s−1 at pH 5. The values of the standard rate constants ks1 characterizing the stage of the first electron transfer decrease similarly. However, the values of the standard rate constants ks2 characterizing the stage of the second electron exchange decrease more markedly in the buffer at pH 4 than in the buffer at pH 5.  相似文献   

20.
Ion transport in a polymer-ionic liquid (IL) soft matter composite electrolyte is discussed here in detail in the context of polymer-ionic liquid interaction and glass transition temperature. The dispersion of polymethylmetacrylate (PMMA) in 1-butyl-3-methylimidazolium hexafluorophosphate (BMIPF6) and 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (BMITFSI) resulted in transparent composite electrolytes with a “jelly-like” consistency. The composite ionic conductivity measured over the range −30 °C to 60 °C was always lower than that of the neat BMITFSI/BMIPF6 and LiTFSI-BMITFSI/LiTFSI-BMIPF6 electrolytes but still very high (>1 mS/cm at 25 °C up to 50 wt% PMMA). While addition of LiTFSI to IL does not influence the glass Tg and Tm melting temperature significantly, dispersion of PMMA (especially at higher contents) resulted in increase in Tg and disappearance of Tm. In general, the profile of temperature-dependent ionic conductivity could be fitted to Vogel-Tamman-Fulcher (VTF) suggesting a solvent assisted ion transport. However, for higher PMMA concentration sharp demarcation of temperature regimes between thermally activated and solvent assisted ion transport were observed with the glass transition temperature acting as the reference point for transformation from one form of transport mechanism to the other. Because of the beneficial physico-chemical properties and interesting ion transport mechanism, we envisage the present soft matter electrolytes to be promising for application in electrochromic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号