首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The effect of the alkyl side group on the synthesis and the electrochemical properties of N-alkyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR1ATFSI) ionic liquids (ILs) is reported. The investigation was focused on the PYR1ATFSI ionic liquid family because of the interesting electrochemical properties of the members with propyl and butyl side chains. Side alkyl groups (A = CnH2n+1 with n ranging from 1 to 10) of different length and structure were used for the synthesis of PYR1ATFSI materials. NMR and DSC have shown that the ionic liquids were correctly synthesized with the exception of the compounds with tertiary side chains. Most of the materials exhibited a conductivity higher than 10−3 S cm−1 already at 12 °C. In the molten state a moderate conductivity decrease was observed with increasing the length and the branching of the side chain (C2H2n+1) group according with the change of viscosity of the ionic liquids. Most of the PYR1ATFSI samples exhibited an electrochemical stability window exceeding 5 V.  相似文献   

2.
Burcu Unal 《Polymer》2009,50(3):905-12298
We examine the pH-dependent swelling of end-linked hydrogels containing high concentrations of amine-functional macromonomers. Gels are formed by end-linking of epoxide-terminated, linear poly(ethylene glycol) (PEG) to either amine-terminated poly(amidoamine) (PAMAM) dendrimers or highly branched poly(ethyleneimine) (PEI). After extraction in neutral water, the hydrogels are swollen in aqueous solutions of HCl or NH4OH to vary the external pH. Equilibrium volume swelling ratios (Qs) pass through a maximum value (Qmax) at an external pH denoted as pH which is approximately 4-5 for the gels studied. The swelling behavior is modeled using Donnan equilibrium theory to describe the ion swelling pressure, with the Flory-Rehner phantom network expression representing the elastic and mixing contributions to the free energy. The model accurately predicts the maximum in swelling near pH = 4-5, but overestimates Qmax for several of the gels due to neglecting the finite extensibility of the short linear PEG chains.  相似文献   

3.
Effects of ionizable groups in hydrogels of copolymer networks on the volumetric contraction-expansion process were investigated. Polymer networks used were: copoly[N-isopropylacrylamide (NIPA)(1 − x)/acrylic acid (HAc) or sodium acrylate (NaAc)(x)] with mole fraction of minor component (x) assuming 0.0114 and 0.0457. From the temperature (T) dependence of total volume of gels, densities of the polymer and solvent (water) components, and stoichiometry, we evaluated (1) the volume of gels occupied by a single mean polymeric residue and associated water molecules (expressed in units of nm3), mean vsp(gel), and (2) number of water molecules per single mean polymeric residue, mean Ns(gel), from near 273 K to 323 K. These quantities (1) and (2) listed above showed how acid and salt forms affect differently on volumetric changes of gels over 50 K. We developed an approach to evaluate volumetric changes of gels solely caused by a single polymeric residue of a minor component (x < 0.05) plus associated water by applying thermodynamic first-order perturbation theory. They are specific vsp(gel)(T) for a single HAc or NaAc polymeric residue plus associated water and the corresponding specific Ns(gel)(T). Specific vsp(gel)(HAc or NaAc)(T) and the corresponding specific Ns(gel(T)) revealed specific characteristics in thermal behavior near their respective transition temperatures from the swollen to shrunken states. We found these thermal changes shown at the nano-scale match very well with specific changes in the molality(T) of both ionizable groups. In fact, these are directly triggered by varying contents of water in gels. Based on the understanding of dissociative equilibrium attained by ionizable groups, we successfully replaced Na+ in hydrogels of copoly[NIPA(1 − x)/NaAc(x)] (x = 0.0457) by hydrogen ions. Absence of Na+ in treated hydrogels was experimentally verified by 23Na NMR and Na atomic absorption flame photometry. Discontinuity in the volumetric contraction-expansion process from the swollen to shrunken states and vice versa was not observed in contradiction to the previous reports [Hirotsu S, Hirokawa Y, Tanaka T. J Chem Phys 1987;87:1392-5. Matsuo SE, Tanaka T. J Chem Phys 1988;89:1695-703.] obtained by the conventional swelling experiments.  相似文献   

4.
A novel technique based on in situ steady state fluorescence measurements is introduced for studying swelling processes of gels formed by free radical crosslinking copolymerization of methyl methacrylate (MMA) and ethylene glycol dimethacrylate (EGDM) in homopolymer solutions. Gels were prepared at 55±2 °C for various EGDM contents. After drying these gels, swelling experiments were performed in chloroform solution of anthracene labeled poly(methyl methacrylate) (An-PMMA) in various molecular weights at room temperature by real time monitoring of anthracene fluorescence intensity. Anthracene labeled PMMA chains having various molecular weights were prepared by atom transfer radical polymerization at 90 °C. During the swelling experiments, it was observed that anthracene emission intensities increased due to trapping of An-PMMA chains into the gel as the swelling time is increased. The trapping of An-PMMA chains in swollen gel, increase by obeying parabolic law in time. Penetration time constant, τ of PMMA chains were measured and found to be increased as the crosslinker density of gel is increased. It is observed that τ values are much higher for high molecular weight An-PMMA chains than low molecular weight chains in all gel samples.  相似文献   

5.
K. Podhajecka 《Polymer》2007,48(6):1586-1595
A new series of associating polymers were prepared by grafting highly hydrophobic side chains: poly(n-butyl acrylate), PNBA; poly(n-butyl methacrylate), PNBMA; and poly(N-(tert-butyl)acrylamide), PTBA of different sizes onto a poly(sodium acrylate), PAANa, backbone. Due to the strong hydrophobic character of the stickers, the dynamics of the associations is very slow as compared to more conventional water-soluble polymers modified with short alkyl chains and the physical associations mainly behave as chemical ones in the experimental conditions. As a consequence, all the copolymers readily self-assemble in aqueous solution forming clusters in very dilute conditions and then gels at higher concentrations. From dynamic measurements, it was shown that the copolymer solutions follow the same scaling relation η ∼ ca, where a is a frequency dependent exponent. In these conditions, all the copolymer solutions exhibit a sol-gel transition which obeys the main rules of the percolation theory. For each copolymer, the critical gel concentration cg depends strongly on the hydrophobic character of the stickers and a single master curve can be drawn by plotting the complex viscosity vs. the reduced concentration, c/cg. Although the temperature dependence of the viscoelastic properties is very weak, due to the slow dynamics of the associations, it was clearly evidenced that the alkyl acrylamide derivative (PAANa-g-PTBA) exhibits a slight thermothickening behavior which contrasts with the thermothinning behavior of alkyl(meth)acrylate derivatives (PAANa-g-PNBA and PAANa-g-PNBMA). The opposite type of behavior is explained by the presence of the amide function which is known to play an important role in the LCST (lower critical solution temperature) phase diagram of N-alkyl derivatives.  相似文献   

6.
Preparation temperature dependence of equilibrium swelling degree and shrinking kinetics of poly(N-isopropylacrylamide) gel has been investigated by optical microscopic measurements. The degree of swelling, d/d0, at 20 °C was found to be strongly dependent on the preparation temperature, Tprep, where d and d0 are the diameter of gel during observation and preparation, respectively. The value of d/d0 was about 1.2 for Tprep=20 °C, but steeply increased by approaching the phase separation temperature ≈32.0 °C. Above 32.0 °C, d/d0 decreases stepwise to 1.46. This upturn in d/d0 was correlated with spatial inhomogeneities in gels. That is, the gel became opaque by increasing Tprep. Though the shrinking half-time, t1/2, of gel was on the order of 500 min for Tprep≤20 °C, t1/2 decreased to 2 min for Tprep≥26 °C. Hence, a rapid shrinking was attained by simply increasing Tprep. The physical implication of this rapid shrinking in gels was discussed in conjunction with the gel inhomogeneities and a thermodynamic theory of swelling equilibrium.  相似文献   

7.
Di-urea cross-linked POE/siloxane hybrid ormolytes (di-ureasils) doped with a wide concentration range of lithium perchlorate trihydrate (LiClO4·3H2O) (200 ≥ n ≥ 0.5, where n expresses the salt content in terms of the number of ether oxygen atoms per Li+ ion) have been analysed by Fourier transform infrared and Raman (FT-IR and FT-Raman, respectively) spectroscopies and X-ray diffraction (XRD). The results obtained lead us to conclude that the xerogels with n ≥ 5 are totally amorphous. At n ≤ 1 free salt is observed. “Free” ClO4 ions appear to be the main charge carriers at the conductivity maximum located within the 25 ≤ n ≤ 8 composition range of this family of ormolytes. At n = 15 ClO4 ions coordinated in mono/tridentate (C3v symmetry) and bidentate (C2v symmetry) configurations were detected. In salt-rich samples with n < 15 there is a marked tendency for ionic association. The resulting decrease that occurs in the concentration of “free” ions is consistent with the observed significant decrease of the ionic conductivity. The analysis of the “amide I” and “amide II” regions provided solid proof that the Li+ ions bond to the urea carbonyl oxygen atoms over the entire range of salt concentration studied.  相似文献   

8.
A multiwall carbon nanotubes (MWNTs)-chitosan modified glassy carbon electrode (GCE) exhibits attractive ability for highly sensitive cathodic stripping voltammetric measurements of bromide (Br). In pH 1.8 H2SO4 solution, a substantial increase in the stripping peak current of Br (compared to bare GCE and chitosan modified GCE) is observed using MWNTs-chitosan modified electrode. Operational parameters were optimized and the electrochemical behaviors of Br were studied by different electrochemical methods. The kinetics parameters were measured, the number of electron transfer (n) was 1 and the transfer coefficient (α) is 0.17. A wide linear calibration range (3.6 × 10−7-1.4 × 10−5 g mL−1) was achieved, with a detection limit of 9.6 × 10−8 g mL−1. The mechanism of electrode reaction was fully discussed.  相似文献   

9.
Two series of diamine monomers, i.e., 4-[3,4,5-tris(n-alkan-1-yloxy)benzyl]-3,5-diaminobenzoate and 2,2′-bis{4-[3,4,5-tris(n-alkan-1-yloxy)benzoate]}-4,4′-biphenyldiamines containing multiple alkyl side chains, were synthesized in which the length of the alkyl side chains was varied from 5 to 18 ethylene units. Polyetherimides (PEIs) were prepared from these two diamines and bis[4-(3,4-dicarboxyphenoxy)phenyl]propane dianhydrides (BisADA) using a one-step method in 1-chloronaphthalene. All the polymers possessed good solubility in chlorinated solvents. The high-molecular weight PEIs could be solution cast into transparent, tough films. The polymers containing the side chains which were at least 16 methylene units could be crystallized. The melting points of the crystals increased as the length of the side chains increased. The glass transition temperatures (Tgs) of the PEIs decreased as the length of the side chains increased due to an internal plasticizing effect of the alkyl side chains. The PEIs containing multiple alkyl side chains showed excellent drawability with much higher elongations but lower tensile strengths and moduli compared with the commercial PEI, Ultem® 1000. The film's in-plane refractive index parallel to the drawing direction (n//) increased and its in-plane refractive index perpendicular to the drawing direction (n) decreased during drawing mainly due to the orientation of main chains in the drawing direction. The film's in-plane birefringence increased with the drawing ratios.  相似文献   

10.
Vildan OzturkOguz Okay 《Polymer》2002,43(18):5017-5026
A series of temperature sensitive hydrogels was prepared by free-radical crosslinking copolymerization of N-t-butylacrylamide (TBA) and acrylamide in methanol. N,N′-methylenebis(acrylamide) was used as the crosslinker. It was shown that the swelling behavior of the hydrogels can be controlled by changing the amount of TBA units in the network chains. Hydrogels immersed in dimethylsulfoxide (DMSO)-water mixtures exhibited reentrant swelling behavior, in which the gels first deswell then reswell if the DMSO content of the solvent mixture is continuously increased. In water over the temperature range of 2-64 °C, hydrogels with less than 40[percnt] TBA by mole were in a swollen state while those with TBA contents higher than 60[percnt] were in a collapsed state. Hydrogels with 40-60[percnt] TBA exhibited swelling-deswelling transition in water depending on the temperature. The temperature interval for the deswelling transition of 60[percnt] TBA gel was found to be in the range from 10 to 28 °C, while for the 40[percnt] TBA gel, the deswelling started at about 20 °C and continued until the onset of the hydrolysis of the network chains at around 64 °C. It was shown that the Flory-Rehner theory of swelling equilibrium provides a satisfactory agreement to the experimental swelling data of the hydrogels, provided that the sensitive dependence of the χ parameter on both temperature and polymer concentration is taken into account.  相似文献   

11.
Polypeptide hydrogels were prepared by cross-linking of hydrophobically-modified poly[N5-(2-hydroxyethyl) l-glutamine] having alkyl side chains –CnH2n+1. Chain length of the alkyl group was n = 8, 16, and 18, and their mole fractions in the polypeptide were varied in the range of 0.05–0.16. Shape memory ability of the prepared polypeptide hydrogels was investigated. After deformation at 60 °C, the hydrogel was cooled in order to fix the temporary deformed shape. It was found that crystallization of the alkyl side chains did not occur, and the fixation ability of the hydrogel at 0 °C was low. In the subsequent heating process, the deformed temporary shape spontaneously recovered to the original shape gradually with increasing temperature, in other words, the shape recovery ratio varied with depending on the recovery temperature. From these observations, it was proposed that the shape fixation of the polypeptide hydrogel was achieved by strong segregation of the hydrophobic alkyl chains at low temperature, and the shape recovery of the deformed hydrogel was accompanied by the gradual decrease of the segregation strength with the temperature increase.  相似文献   

12.
Volkan Can  Oguz Okay 《Polymer》2007,48(17):5016-5023
The swelling behavior and the elastic properties of nanocomposite hydrogels have been investigated. The hydrogels were prepared by free-radical polymerization of the monomers acrylamide (AAm), N,N-dimethylacrylamide (DMA), and N-isopropylacrylamide (NIPA) in aqueous clay suspensions at 21 °C. Laponite with a radius of gyration in distilled water of 20 nm was used as clay particles in the hydrogel preparation. The reactions with AAm monomer were carried out in the presence of the chemical crosslinker N,N′-methylenebis(acrylamide) (BAAm). It was found that the volume of nanocomposite hydrogels immersed in water rapidly increases and attains a maximum value after about one day. Surprisingly, further increase in the swelling time results in the deswelling of the gels until they reach a limiting swelling ratio after about 5 days. This unusual swelling behavior is observable only when the clay concentration in the hydrogel is above the overlap threshold c. Swelling measurements combined with the elasticity tests show that the effective crosslink density first decreases, but then increases with increasing time of swelling of the hydrogels. The results were explained in terms of the rearrangements of the highly entangled polymer chains and clay particles during the gel volume change.  相似文献   

13.
Ionically conducting materials based on a poly(?-caprolactone) (PCL)/siloxane organic/inorganic host framework doped with magnesium triflate (Mg(CF3SO3)2) were synthesized by the sol-gel process. In this matrix short PCL chains are covalently bonded to the siliceous network via urethane linkages. In this study the salt content of samples was identified using the conventional notation n, where n indicates the number of (C(O)(CH2)5O) PCL repeat units per Mg2+ ion. Xerogels with compositions ranging from n = ∞ to 1 were prepared. The only composition studied that was not entirely amorphous was that prepared with n = 1. Xerogels with n ≥ 7 are thermally stable up to at least 200 °C. The composition with the highest conductivity of the series is that with n = 34 (5.9 × 10−9 and 9.8 × 10−7 S cm−1 at 24 and 104 °C, respectively).  相似文献   

14.
Mario Gauthier  Abdul Munam 《Polymer》2009,50(25):6032-2467
Model filler particles were obtained by grafting polyisoprene (PIP) chains onto spherical latex particles of polystyrene cross-linked with 12 mol% divinylbenzene. These particles, with a narrow size distribution and a diameter of ca. 400 nm, were synthesized by emulsifier-free starved-feed emulsion polymerization. Acetyl coupling sites were introduced randomly at either low (5 mol%) or high (30 mol%) target substitution levels on the latex particles by Friedel-Crafts acylation with acetyl chloride and AlCl3 in nitrobenzene. ‘Living’ polyisoprenyllithium chains, generated from isoprene and sec-butyllithium (sec-BuLi), were then coupled with the acetylated particles. The PIP side chains had a high 1,4-polyisoprene microstructure content and a number-average molecular weight (Mn) of either 1.5 × 103 (1.5 K), 5 × 103 (5 K), or 3 × 104 (30 K). The PIP content of the grafted particles was determined from the yield of isolated particles and by 1H NMR spectroscopy analysis. The grafted latex particles were blended in solution with linear polyisoprene (Mn = 3.95 × 105, 395 K). The influence of the filler-matrix interactions on the rheological behavior of the blends was determined by dynamic mechanical analysis for the different filler blends. Increases in complex viscosity and storage modulus, and decreased damping factors were observed in all cases relatively to the pure matrix polymer. The enhancements, decreasing in the order 30 mol% > 5 mol% acetylation, and with the grafted PIP chain length as 30 K > 5 K ≈ 1.5 K, are deemed to reflect the extent of interactions between the filler particles and the polymer matrix.  相似文献   

15.
The adsorption kinetics and thermodynamics for the formation of redox active self-assembled monolayer (SAM) of 2-(n-mercaptoalkyl)hydroquinone (abbreviated as H2Q(CH2)nSH, where n = 4, 6, 8, 10, and 12) on gold electrode has been investigated by cyclic voltammetry to study the effects of concentration and alkyl chain length. The time dependence of surface coverage, differential capacitance, and formal potential of electroactive hydroquinone(H2Q) moiety supports that the adsorption of H2Q(CH2)nSH molecules typically processes with a two-step adsorption consisted of a fast initial adsorption and a slowly following reorganization. The adsorption processes can be satisfactorily described by simple Langmuir adsorption kinetics, irrespective of concentration and alkyl chain length of adsorbate molecule. Based on Langmuir kinetics, the adsorption rate constant was determined at the initial step for the formation of all H2Q(CH2)nSH-SAMs studied in this work. The rate constant value was found to be decreased with increasing alkyl chain length and decreasing bulk solution concentration (≤10 μM). The dependence of a surface coverage (Γe) at adsorption equilibrium on the bulk concentration is accurately described by the Langmuir isotherm at several concentrations ranging from 8 × 10−6 to 1 × 10−5 M for all H2Q(CH2)nSH molecules. Parameters characterizing the adsorption thermodynamics, such as Γs, adsorption coefficient (β), and adsorption free energy (ΔGads) were determined from this isotherm.  相似文献   

16.
Xiaoqin Xu  Haoran Li  Yong Wang  Zhiquan Shen 《Polymer》2007,48(14):3921-3924
Imidazolium salts, most of which are room temperature ionic liquids (ILs), have been introduced as effective and tunable cocatalysts in the copolymerization of CO2 with epoxides catalyzed by (salen)CrIIICl complex for the first time. Effects of imidazolium salts with different alkyl chains as well as with different anions on the copolymerization were investigated. The results showed that the copolymerization was influenced obviously by the property of anion. In addition, the cation of imidazolium salts with longer alkyl chain length such as n-dodecyl (TOF, 242.5 h−1, carbonate linkages > 99%) displays better activities and selectivity in the copolymerization as compared with N-MeIm (TOF, 72.5 h−1, carbonate linkages 94%). These results are instructive for further design of task-specific ILs as effective cocatalysts to improve the copolymerization of CO2 with epoxides.  相似文献   

17.
In this study we report the characterization of a prototype solid-state electrochromic device based on poly(ethylene oxide) (PEO)/siloxane hybrid networks doped with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). The polymer networks prepared, designated as di-ureasils and represented as d-U(2000), were produced by a sol-gel procedure and are composed of a siliceous framework to which both ends of polyether chains containing about 40 CH2CH2O units are covalently bonded through urea linkages. Samples with compositions of 200 ≥ n ≥ 0.5 (where n is the molar ratio of CH2CH2O to Li+) were characterized by thermal analysis, complex impedance measurements and cyclic voltammetry at a gold microelectrode. Electrolyte samples were obtained as self-supporting, transparent, amorphous films and at room temperature the highest conductivity was observed with the d-U(2000)35LiTFSI composition (3.2 × 10−5 Ω−1 cm−1). We report the results of preliminary evaluation of these polymer electrolytes as multi-functional components in prototype electrochromic displays. Device performance parameters such as coloration efficiency, optical contrast and image stability were also evaluated. The electrolytes with n > 8 presented an optical density above 0.56 and display assemblies exhibited good open-circuit memory and stable electrochromic performances.  相似文献   

18.
Considerable interest exists in the development of novel n-type conjugated polymers, since many currently available polymer systems have insufficient electron mobility and/or electron affinity. In this work, a universal synthesis route is presented towards a new class of n-type conjugated polymers, i.e. poly(p-fluoranthene vinylene) (PFV) and its derivatives. This route is illustrated with three examples, i.e. unsubstituted PFV and functionalized hexyl-PFV and dodecyl-PFV. All polymers have been synthesized via the dithiocarbamate precursor route. Solubility was introduced by incorporation of alkyl side chains, which leads to a significantly enhanced purity and processability as compared to unsubstituted PFV. Under the applied electrochemical conditions PFV-type polymers demonstrate typical n-type behavior. Additional CELIV mobility measurements on dodecyl-PFV reveal an excellent electron mobility, μe = 1.4 × 10−4 cm2/Vs. Hence, poly(p-fluoranthene vinylene) and its derivatives are promising n-type materials for organic optoelectronic applications.  相似文献   

19.
R. Liu  F. Cellesi  B.R. Saunders 《Polymer》2009,50(6):1456-2388
In this work thermoassociative gel formation of a new family of aqueous temperature-responsive copolymer solutions has been investigated. This was achieved using a cationic poly(N-isopropyl acrylamide) (PNIPAm) graft copolymer recently prepared [Liu R, De Leonardis P, Cellesi F, Tirelli N, Saunders BR. Langmuir 2008;24:7099]. The PDMA+x-g-(PNIPAmn)y copolymers have x and y values that originate from the macroinitiator; the value for n corresponds to the PNIPAm arm length. DMA+ is quarternarized N,N-dimethylaminoethyl methacrylate. The copolymer solutions exhibited cloud point temperatures (Tclpt) of about 33 °C, which were not significantly affected by x/y ratio or the value for n. Thermoassociative gel formation occurred above Tclpt at copolymer concentrations (Ccopol) greater than or equal to 4 wt.%. This is a reasonably low Ccopol value and is a consequence of the graft copolymer architecture employed. We investigated the effect of temperature, Ccopol and copolymer structure on gelation and gel elasticity using variable - temperature dynamic rheology. For PDMA+30-g-(PNIPAm210)14 solutions at 39 °C it was found that G′ (elastic modulus) scales with Ccopol according to G′ ∼ Ccopol3.85. The data suggested that a significant proportion of PNIPAm units is not directly involved in network formation. Thermoassociative gel formation and the gel properties for these systems appear to be governed by a balance between electrostatic repulsion involving the DMA+ units (favouring spatial extension of the copolymer backbones) and attractive hydrophobic interactions between PNIPAm side chains (favouring associative crosslink formation).  相似文献   

20.
A thermosensitive poly(N-isopropylacrylamide) (PNIPAM) grafted gel, which comprises hydrophilic backbone and freely mobile PNIPAM graft chains, was synthesized by reversible addition fragmentation chain transfer (RAFT) polymerization and end-linking processes. Functional PNIPAM bearing dithiobenzoate end group (-C(S)S-R) was prepared first, and then it was reacted with divinyl compounds to obtain gel. In order to adjust the composition of the gels, two divinyl compounds, N,N-methylenebisacrylamide (BIS) and poly(ethylene glycol) diacrylate (PEGDAC), were used. The cross-linking polymerization mechanism was proposed. The swelling and deswelling kinetics of the hydrogels were measured. The gels exhibit rapid deswelling kinetics. At the same time, they show rapid swelling kinetics within 30 min, whereas a conventional PNIPAM-co-PEG-co-BIS gel with the same feed composition requires more than 10 h to reach swelling equilibrium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号