首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The processability of commercial polyethylene homopolymers and copolymers, including both high and low density polyethylenes, was evaluated with respect to their molecular structure by measuring their melt rheological and thermodynamic properties. Short chain branching (SCB) mainly controls the density and thermodynamic properties, but it has little effect on the melt rheological properties. Long chain branching (LCB) has little effect on the density and the thennodynamic porperties, but it has drastic effects on the melt rheological properties. LCB increases the pseudoplasticity and the flow activation energy, reducing the viscosity in processing and thus improving the processability. Very small amounts of LCB in metallocene type low density polyethylenes very effectively reduce the viscosity and improve the flow stability in processing.  相似文献   

2.
The effect of molecular architecture on the dynamic viscoelastic properties of new metallocene high density polyethylenes has been analyzed. Bimodal molecular weight distribution metallocene polyethylenes show features different from conventional polydisperse and bimodal polyethylenes. Higher values of Newtonian viscosity (ηo) at the same values of weight average molecular weight (Mw) and stronger frequency dependence of dynamic viscosity (η′) than in conventional HDPE-s have been observed; this leads to lower values of the characteristic frequency for the onset of non-Newtonian behavior (ωo) and higher values of the power law index (α). These features are probably due to the presence of very small amounts of long chain branching (LCB). The implications of these results in polymer processing are analyzed comparing extrusion rheometer data, which leads to the conclusion that extrusion difficulties in metallocene catalyzed polyethylenes can be overcome with bimodal molecular weight distributions.  相似文献   

3.
Four metallocene polyethylenes (PE), one conventional low density polyethylene (LDPE), and one conventional linear low density polyethylene (LLDPE) were characterized in terms of their complex viscosity, storage and loss moduli, and phase angle at different temperatures. The effects of molecular weight, breadth of molecular weight distribution, and long‐chain branching (LCB) on the shear rheological properties of PEs are studied. For the sparsely long‐chain branched metallocene PEs, LCB increases the zero‐shear viscosity. The onsets of shear thinning are shifted to lower shear rates. There is also a plateau in the phase angle, δ, for these materials. Master curves for the complex viscosity and dynamic moduli were generated for all PE samples. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

4.
The hierarchical multi-mode molecular stress function (HMMSF) model developed by Narimissa and Wagner [Rheol. Acta 54, 779–791 (2015), and J. Rheol. 60, 625–636 (2016)] for linear and long-chain branched (LCB) polymer melts were used to analyze the set of transient elongational and shear viscosity data of two LCB low-density polyethylenes (1840H and 2426 k), and a linear poly-(ethylene-co-α-butene), PEB A-780090 as reported by [Li et al. J. Rheol. 64, 177 (2020)], who had developed a new horizontal extensional rheometer to extend the lower limits of elongational viscosity measurements of polymer melts. Comparison between model predictions and elongational stress growth data reveals excellent agreement within the experimental window, and good consistency with shear stress growth data, based exclusively on the linear-viscoelastic relaxation spectrum and only two nonlinear model parameters, the dilution modulus GD for extensional flows, and in addition a constraint release parameter for shear flow.  相似文献   

5.
Fourteen long-chain branched (LCB) polyethylene (PE) samples were prepared by a constrained geometry catalyst. The PE samples had average branching frequencies of 0.06-0.98 branches per polymer chain, as determined by the nuclear magnetic resonance spectroscopy (13C NMR). These samples, as well as five linear PEs were characterized using a gel permeation chromatography (GPC) coupled with online three-angle laser light scattering (LS), differential refractive index (DRI), and viscosity (CV) detectors. The root mean-square radius of gyration intrinsic viscosity ([η]), and molecular mass (M) of the PEs were measured for each elution fraction. Based on the comparison of the long-chain branching (LCB) PEs with their linear counterparts and the Zimm-Stockmayer equation, the distributions of long-chain branch frequency (LCBF) and density (LCBD) as function of molecular mass were estimated. It was found that although the LCBF increased with the increase of molecular mass, the LCBD showed a maximum value in the medium molecular mass range for most of the PE samples. The average LCBD data from the GPC analysis were in good agreement with the 13C NMR measurements. The rheological properties and processing behavior of these samples were also assessed. While the long chain branching showed significant effects on the modulus and viscosity, it did not improve the processing. Compared to linear PE, polymer melt flow instabilities such as sharkskin, stick-slip and gross melt fracture developed in extrusion of LCB PEs occurred at lower wall shear stresses and apparent shear rates.  相似文献   

6.
Long‐chain branching polypropylene (LCB‐PP)/clay nanocomposites were prepared by melt blending in a twin‐screw extruder. The microstructure and melt rheology of these nanocomposites were investigated using x‐ray diffraction, transmission electron microscopy, oscillatory shear rheology, and melt elongation testing. The results show that, the clay layers are intercalated by polymer molecular chains and exfoliate well in LCB‐PP matrix in the presence of maleic anhydride grafted PP. Rheological characteristics, such as higher storage modulus at low‐frequency and solid‐like plateau in tan‐ω curve, indicate that a compact and stable filler network structure is formed when clay is loaded at 4 phr (parts per hundred parts of) or higher. The response of the nanocomposite under melt extension reveals an initial decrease in the melt strength and elongational viscosity with increasing clay concentration up to 6 phr. Later, the melt strength and elongational viscosity show slight increases with further increasing clay concentration. These results might be caused by a reduction in the molecular weight of the LCB‐PP matrix and by the intercalation of LCB‐PP molecular chains into the clay layers. Increases in the melt strength and elongational viscosity for the nanocomposites with decreasing extrusion temperature are also observed, which is due to flow‐induced crystallization under lower extrusion temperature. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

7.
The sensitivity of rheological behavior to the presence of long chain branched (LCB) molecules in a matrix of ostensibly linear high density polyethylene (HDPE) is examined. Branching is introduced by gamma irradiation of the HDPE just short of the gel dose. The irradiated and unirradiated polymers are blended to obtain various concentrations of LCB from 1 to 7.2 LCB/10,000 carbon atoms. Dramatic changes in viscoelasticity and temperature dependencies far in excess of those expected from molecular weight changes are detected. While the Mw¯ observed by low angle laser light scattering (LALLS) and size exclusion chromatography (SEC) increases by a factor of only about 1.2, the dynamic viscosity at low frequencies and 190°C increases by a factor of 14. Furthermore, flow activation energy values increase from 8 to 40 kcal/mole.  相似文献   

8.
Melt capillary flow and extrudate swelling for low density polyethylenes (LDPE), differing in ease of heavy-duty, blownfilm extrusion, have been employed as processability criteria. LDPE of good processability is characterized by a unique combination of melt fluidity, temperature, shear rate dependence and melt elasticity. These characteristics of flow are correlated with LDPE film blowing process variables such as maximum take-up speed, film thickness scatter, and extruder temperatures profile. Intuitively, these melt flow criteria should be extended to Trouton's viscosity and the tensile strength of the melt. The limited development of the elongation viscometry techniques, however, has limited their application.  相似文献   

9.
Various types of polyethylene homopolymers and copolymers, including linear high-density polyethylene (HDPE), branched low-density polyethylene (BLDPE), poly(ethylene vinyl acetate) copolymer (EVA), heterogeneous linear poly(ethylene/α-olefin) copolymer (het-LEAO) or commonly known as linear low-density polyethylene, homogeneous linear poly(ethylene/α-olefin) copolymer (hom-LEAO), and homogeneous branched poly(ethylene/α-olefin) copolymer (hom-BEAO), were evaluated for their melt rheological and thermodynamic properties with emphasis on their molecular structure. Short-chain branching (SCB) mainly controls the density, but it has little effect on the melt rheological properties. Long-chain branching (LCB) has little effect on the density and thermodynamic properties, but it has drastic effects on the melt rheological properties. LCB increases the pseudo-plasticity and the flow activation energy for both the polyethylene homopolymer and copolymer. Compared at a same melt index and a similar density, hom-LEAO has the highest viscosity in processing among all polymers due to its linear molecular structure and very narrow molecular weight distribution. Small amounts of LCB in hom-BEAO very effectively reduce the average viscosity and also improve the flow stability. Both hom-LEAO and hom-BEAO, unlike het-LEAO, have thermodynamic properties similar to BLDPE. © 1996 John Wiley & Sons, Inc.  相似文献   

10.
Melt How data has been determined for a series of fractionated and whole low density polyethylenes which has been characterized in terms of their molecular weights and degree of long-chain branching, (LCB). The resulting data indicate that low LCB influences melt flow both through a reduction in molecular size and an increased level of intermolecular interaction. Die swell measurements on whole polymers indicate an increase in melt elasticity with increase in degree of LCB for samples of similar melt flow (MI). Comparison of GPC data with observed die swell characteristics indicates that die swell is a molecular size dependent property and independent of intermolecular entanglement effects, suggesting that the measurement of elastic properties of LDPE melts will provide a means of determining relative degrees of LCB for commercial resins.  相似文献   

11.
Long chain branching (LCB) were added to linear polypropylene (PP) using reactive extrusion in the presence of selected polyfunctional monomers (PFMs) and a peroxide of dibenzoyl peroxide (BPO). Fourier Transformed Infrared spectra (FTIR) directly confirmed the grafting reaction occurred during the reactive extrusion process. Various rheological plots including viscosity curve, storage modulus, Cole‐Cole plot, and Van‐Gurp plots, confirmed that the LCB structure were introduced into modified PPs skeleton after modification. In comparison with linear PP, the branched samples exhibited higher melt strength, lower melt flow index, and the enhancement of crystallization temperature. The LCB level in modified PPs and their melt strength were affected by the type of PFM used and could be controlled by the PFM properties and structure. PFMs with lower boiling points, such as 1, 4‐butanediol diacrylate (BDDA), could not produce LCB structure in modified PP skeleton. The shorter molecular chain bifunctional monomers, such as 1,6‐hexanediol diacrylate (HDDA), favored the branching reaction if their boiling points were above the highest extrusion temperature. And some polar groups, such as hydroxyl, in the molecule of PFM were harmful to the branching reaction, which might be attributed to the harm of the polarity of groups to the dispersion of PFM in PP matrix. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

12.
Rheological and thermal properties of m-LLDPE blends with m-HDPE and LDPE   总被引:1,自引:0,他引:1  
The dynamic and steady state behavior of metallocene linear low density polyethylene (m-LLDPE) blended with metallocene high density polyethylene (m-HDPE) and with low density polyethylene (LDPE) were measured in parallel plate rheometer at 160, 180, and 200 °C. The composition dependence of zero shear viscosity η0, the characteristic relaxation time τ0 and the characteristic frequency ω0 of m-LLDPE/m-HDPE blends show a linear variation in the whole range of weight fraction, which indicates that m-LLDPE/m-HDPE blends are miscible blend. At the same time, m-HDPE showing a ‘dissident’ rheological behavior should possess a certain very low degree of LCB. Two calculation methods of LCB verify this point. In contrast, the composition dependence of zero shear viscosity η0 of m-LLDPE/LDPE blends shows a positive deviation from the log-additivity rule, which can be well fitted by using the immiscible blend equation of Utracki. The characteristic relaxation time τ0 and the characteristic frequency ω0 have a sharp variation with the small amounts of LDPE in the blends, which also indicates a phase separation in the system. The thermal properties of m-LLDPE/m-HDPE blends are very similar to a single-component system. However, m-LLDPE/LDPE blends are immiscible in both melt and crystal states. DSC results are consistent with the rheological properties of these two series of blends.  相似文献   

13.
Jianye Liu  Wei Zhou  Chixing Zhou 《Polymer》2009,50(2):547-552
The feasibility of preliminary tailoring of the long chain branched (LCB) polymer through complex flow field was evaluated in the torque rheometer, for the reaction of melt polyolefin elastomer (POE) with peroxides at elevated temperatures. With the compensation of temperature, the strength of complex shear flow could be the only factor affecting the reaction kinetics and mechanism. The results of sample characterization by the rheological and dilute polymer solution methods indicated that the degradation mainly made the length of LCB arm shorter and shorter as the rotational speed increases. Extremely, a certain amount of LCB degraded to be linear chains again due to the scission approaching the branching point at intense mixing condition. One new LCB index (DLCB) was defined from nonlinear oscillatory shear, and a nearly linear relationship between it and long chain branching index (LCBI) was found, which can be a map to quantify LCB level by Fourier Transform Rheology (FTR).  相似文献   

14.
This paper investigates three aspects of linear-low-density polyethylene (LLDPE) rheological properties: shear viscosity variations with shear rate and temperature, tensile behavior determined with an extensiometer, and extrusion defects. The differences in shear viscosity variation with shear rate and temperature between LLDPE and LDPE (low-density polyethylene) are shown. These differences, attributed to wider molecular weight distribution and to long chain branching (LCB) in LDPE, involve different extrusion behaviors. The lack of LCB in LLDPE can be demonstrated by comparison of the measured Newtonian viscosity with the value of the same parameter calculated from molecular weight distribution and composition law of Newtonian viscosities. The lack of LCB leads to good melt extensibility, which is shown by tensile properties of polyethylene melts determined with a non-isothermal extensiometer. The melt fracture phenomenon is studied because it promotes surface defects on bubbles in film application. Extrudate distortions are examined at the laboratory extruder outlet. This test shows differences between LLDPE and LDPE, but also between some LLDPE samples.  相似文献   

15.
Ute Keßner 《Polymer》2010,51(2):507-5063
This paper presents correlations between polyethylenes of different compositions and branching architectures and their viscoelastic behavior in dependence on the temperature and demonstrates how effectively rheological experiments can be used for analytical purposes. Long-chain branched polyethylenes are known to be thermorheologically complex. But the thermorheological complexity of long-chain branched linear low-density metallocene polyethylenes (LCB-mLLDPE) differs from that of low-density polyethylenes (LDPE) in the way that the activation energy of LDPE becomes constant by a temperature-dependent modification of the moduli whereas a constant activation energy cannot be obtained for LCB-mLLDPE. These findings are explained by the assumption that the LCB-mLLDPE investigated consist of at least two species with distinctly different activation energies. This interpretation is supported by the thermorheological analysis of a blend of known parts of an LDPE and a linear low-density polyethylene (LLDPE). A thermorheological complexity was found similar to that of the LCB-mLLDPE which reflects the different activation energies of the two components. Results of that kind make it possible to get information on the composition of LCB-mLLDPE not available from common analytical methods.  相似文献   

16.
The effect of molecular structure (MW, MWD and LCB) on the critical tensile stress (σc) for the onset of gross melt fracture (OGMF), proposed in Part I (1) as a material‐dependent criterion for fracture, was determined for a group of polyethylenes varying in structure. These included linear low and high‐density polyethylenes and several materials produced using metallocene and constrained geometry catalysts. It was found that the critical stress is independent of MW, for constant polydispersity but increases with increasing long chain branching and polydispersity. The addition of boron nitride particles had no effect on the σc up to a level of 0.5% by weight.  相似文献   

17.
18.
The processing behavior of a number of linear low‐density polyethylenes/low density polyethylene (LLDPE/ LDPE) blends with emphasis on the effects of long chain branches is presented. A Ziegler‐Natta linear low‐density polyethylene was blended with four low‐density polyethylene LDPE's having distinctly different molecular weights. The weight fractions of the LDPEs used in the blends were 1, 5, 10, 20, 50, and 75 wt%. Capillary extrusion reveals that the onset of sharkskin and gross melt fracture are slightly influenced with the addition of LDPE into LLDPE. However, the amplitude of the oscillations in the stick‐slip flow regime was found to scale well with the weight fraction of LDPE. Amounts as low as 1 wt% LDPE have a significant effect on the amplitude of pressure oscillations. These effects are clearly due to the presence of long chain branching (LCB); furthermore, it was observed that the onset of this flow regime was shifted to higher shear rates with increase of LDPE content. On the other hand, shear rheology is not sensitive to detect addition of small levels of LDPE up to 20 wt%. Extensional rheology can detect levels of LDPE as small as 1 wt% only at high Hencky strain rates (typically greater than 5s?1) and only for certain blends, typically those that contain LDPE of high molecular weight. It is suggested that the magnitude of oscillations in the oscillating melt fracture flow regime is a sensitive method capable of detecting low levels of LCB. POLYM. ENG. SCI., 47:1317–1326, 2007. © 2007 Society of Plastics Engineers  相似文献   

19.
Transient elongational viscosity of linear low density polyethylene (LLDPE) and two low density polyethylenes (LDPE1 and LDPE2) was measured at one temperature and different deformation rates in constant strain rate elongational rheometer. The elongational viscosity measurements revealed stronger strain hardening characteristics for LDPEs than that observed for LLDPE. The different response to stretching of these polymers is thought to relate to the presence of long chain branches in LDPEs, which affect the elongation viscosity profoundly. The onset of strain hardening for all long chain branched LDPEs as well as for linear LLDPE occurs at the same value of the critical strain, which is independent of temperature or deformation rate. An attempt has been made to explain this phenomenon in terms of the changes that occur in the macromolecular network upon stretching.  相似文献   

20.
A knowledge of the variation of melt viscosity of thermoplastic polymers with both shear rate and temperature is of considerable importance to plastics engineers as well as to polymer rheologists. The actual measurement of melt viscosity at a large number of temperatures and shear rates is frequently a tedious and time-consuming task. A technique has been developed, based upon the applicability of shear rate-temperature superposition, for predicting the flow curves of a number of olefin polymers and copolymers at various temperatures from experimental data obtained at one temperature for the material in question. The experimental validity for superimposing log shear stress—log shear rate curves at different temperatures along the log shear rate axis has been established for both high and low density polyethylenes, polypropylene, polybutene-1, and poly (ethylene vinyl acetate) copolymers. The temperature dependence of the resultant shift factors has been determined for each system, and the method of utilizing this information to predict viscosities as a function of temperature and shear rate is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号