首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present atomic force microscopic images of the interphase morphology of vertically segregated thin films spin coated from two-component mixtures of poly[2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylene-vinylene] (MEH-PPV) and polystyrene (PS). We investigate the mechanism leading to the formation of wetting layers and lateral structures during spin coating using different PS molecular weights, solvents and blend compositions. Spinodal decomposition competes with the formation of surface enrichment layers. The spinodal wavelength as a function of PS molecular weight follows a power-law similar to bulk-like spinodal decomposition. Our experimental results indicate that length scales of interface topographical features can be adjusted from the nanometer to micrometer range. The importance of controlled arrangement of semiconducting polymers in thin film geometries for organic optoelectronic device applications is discussed.  相似文献   

2.
In this study binary and ternary blends of polylactide (PLA), polycaprolactone (PCL) and thermoplastic starch (TPS) are prepared using a one-step extrusion process and the morphology, rheology and physical properties are examined. The morphology and quantitative image analysis of the 50/50 PLA/TPS blend transverse phase size demonstrate a bimodal distribution and the addition of PCL to form a ternary blend results in a substantial number of fine dispersed particles present in the system. Focused ion beam irradiation, followed by atomic force microscopy (AFM) shows that dispersed PCL forms particles with a size of 370 nm in PLA. The TPS phase in the ternary blends shows some low level coalescence after a subsequent shaping operation. Dynamic mechanical analysis indicates that the temperature of the tan δ peak for the PLA is independent of TPS blend composition and that the addition of PCL in the ternary blend has little influence on the blend transitions. Both the α and β transitions for the thermoplastic starch are highly sensitive to glycerol content. When TPS of high glycerol content is blended with PLA, an increase in the ductility of the samples is achieved and this effect increases with increasing volume fraction of TPS. The ternary blend results in an even greater ductility with an elongation at break of 55% as compared to 5% for the pure PLA. A substantial increase in the notched Izod impact energy is also observed with some blends demonstrating three times the impact energy of pure PLA. The mechanical properties for the ternary blend clearly indicate a synergistic effect that exceeds the results obtained for any of the binary pairs. Overall, the ternary blend approach with PLA/TPS/PCL is an interesting technique to expand the property range of PLA materials.  相似文献   

3.
Thermoplastic starch (TPS), as opposed to dry starch, is capable of flow and hence when mixed with other synthetic polymers can behave in a manner similar to conventional polymer-polymer blends. This paper presents an approach to preparing polyethylene/thermoplastic starch blends with unique properties. A one-step combined twin-screw/single screw extrusion setup is used to carry out the melt-melt mixing of the components. Glycerol is used as the starch plasticizer and its content in the TPS is varied from 29 to 40%.Under the particular one-step processing conditions used it is possible to develop continuous TPS (highly interconnected) and co-continuous polymer/TPS blend extruded ribbon which possess a high elongation at break, modulus and strength in the machine direction. The PE/TPS (55:45) blend prepared with TPS containing 36% glycerol maintains 94% of the elongation at break and 76% of the modulus of polyethylene. At a composition level of 71:29 PE/TPS for the same glycerol content, the blend retains 96% of the elongation at break and 100% of the modulus of polyethylene. These excellent properties are achieved in the absence of any interfacial modifier and despite the high levels of immiscibility in the polar-nonpolar TPS-PE system. The 55:45 blend possesses a 100% continuous or fully interconnected TPS morphology, as measured by hydrolytic extraction. This highly continuous TPS configuration within the blend should enhance its potential for environmental biodegradation. The elongation at break in the cross direction of these materials, although lower than the machine direction properties, also demonstrates ductility at high TPS concentrations. At a glycerol content of 36% in the TPS, the blends demonstrate only very low levels of sensitivity to moisture. A high degree of transparency is maintained over the entire concentration range due to the similar refractive indices of PE and TPS and the virtual absence of interfacial microvoiding.Effective control of the glycerol content, TPS concentration and processing conditions can result in a wide variety of morphological structures including spherical, fiber-like, highly continuous and co-continuous morphologies. These various blend morphologies are shown to be the determining parameters with respect to the observed mechanical properties.This material has the added benefit of containing large quantities of a renewable resource and hence represents a more sustainable alternative to pure synthetic polymers.  相似文献   

4.
Dong Wang  Bao-Hua Guo 《Polymer》2011,52(1):191-200
We report a novel and effective strategy that compatibilizes three immiscible polymers, polyolefins, styrene polymers, and engineering plastics, achieved by using a polyolefin-based multi-phase compatibilizer. Compatibilizing effect and morphology development are investigated in a model ternary immiscible polymer blends consisting of polypropylene (PP)/polystyrene(PS)/polyamide(PA6) and a multi-phase compatibilizer (PP-g-(MAH-co-St) as prepared by maleic anhydride (MAH) and styrene (St) dual monomers melt grafting PP. Scanning electron microscopy (SEM) results indicate that, as a multi-phase compatibilizer, PP-g-(MAH-co-St) shows effective compatibilization in the PP/PS/PA6 blends. The particle size of both PS and PA6 is greatly decreased due to the addition of multi-phase compatibilizer, while the interfacial adhesion in immiscible pairs is increased. This good compatibilizing effect is promising for developing a new, technologically attractive method for achieving compatibilization of immiscible multi-component polymer blends as well as for recycling and reusing of such blends. For phase morphology development, the morphology of PP/PS/PA6 (70/15/15) uncompatibilized blend reveals that the blend is constituted from PP matrix in which are dispersed composite droplets of PA6 core encapsulated by PS phase. Whereas, the compatibilized blend shows the three components strongly interact with each other, i.e. multi-phase compatibilizer has good compatibilization between the various immiscible pairs. For the 40/30/30 blend, the morphology changed from a three-phase co-continuous morphology (uncompatibilized) to the dispersed droplets of PA6 and PS in the PP matrix (compatibilized).  相似文献   

5.
This work was aimed at studying the emulsification efficiency of graft copolymers and the effect of feeding mode on the emulsification efficiency using the emulsification curve approach. The blends were composed of polystyrene (PS) and polyamide 6 (PA6). PS was always the matrix and PA6 the dispersed phase. A series of graft copolymers of PS and PA6, denoted as PS-g-PA6, with different molecular structures were used as emulsifiers. Feeding mode had a very significant effect on the size of the dispersed phase domains at short mixing time and its effect decreased or became negligible at long mixing time. This indicates that feeding mode affected mostly the time necessary for the PS-g-PA6 emulsifier to reach and emulsify the PS/PA6 interfaces. The molecular structure of the PS-g-PA6 graft copolymer also had a profound effect on its emulsification efficiency. The longer the PA6 grafts (from 1.7 to 5.1 kg/mol), the higher the emulsification efficiency. On the other hand, the number of PA6 grafts had little effect on the emulsification efficiency when the PA6 grafts were short (1.6-1.7 kg/mol). The effect of the blend composition was also investigated.  相似文献   

6.
Starch as an inexpensive and renewable source has been used as a filler for environmental friendly plastics for about two decades. In this study, glycerol was used as a plasticizer for starch to enhance the dispersion and the interfacial affinity in thermoplastic starch (TPS)/polybutene‐1(PB‐1) blend. PB‐1 was melt blended with TPS using a single screw extrusion process and molded using injection molding process to investigate the rheological and mechanical properties of these blends. Rheological properties were studied using a capillary rheometer, and the Bagley's correction was performed. Mechanical analysis (stress–strain curves) was performed using Testometric M350‐10 kN. The rheological properties showed that the melt viscosity of the blend is less than that of PB‐1, and the flow activation energy at a constant shear stress of the blend increases with increasing glycerol content in the blend. The mechanical experiments showed that both stress and strain at break of the blends are less than that of PB‐1, whereas the Young's modulus of the most blends is higher than that of PB‐1 which confirms the filling role of TPS in the blend. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

7.
This article investigates the structure and properties of thermoplastic starch/PLA blends where the TPS phase is plasticized by sorbitol, glycerol, and glycerol/sorbitol mixtures. The blends were prepared using a twin‐screw extruder where starch gelatinization, water removal, and dispersion of TPS into a PLA matrix were carried out sequentially. The plasticizers were added to starch in the first stage of the extruder to allow complete starch gelatinization. The PLA was added at mid‐extruder and thoroughly mixed with the TPS. The plasticizer concentration was varied from 30 to 42% and the TPS content was varied from 27 to 60% on a weight basis. In all investigated blends, the PLA formed the continuous phase and the TPS was the dispersed phase. The viscosity, blend morphology, tensile mechanical properties as well as the thermal properties of the materials were measured. It was found that the glycerol/sorbitol ratio has an important effect on the blend properties. Finer blend morphologies, higher tensile strength and modulus but lower crystallization rate were found for the sorbitol plasticized blends. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
Novel poly(ether ether ketone)-block-polyimide copolymers (PEEK-b-PI) with different block length were prepared by the polycondensation of amino-terminated poly(ether ether ketone) oligomer and anhydride-terminated polyamic acid oligomer. As the compatibility agent, PEEK-b-PI was added to the poly(ether ether ketone)/thermoplastic polyimide (PEEK/TPI) blend, and blends of PEEK/TPI/PEEK-b-PI were prepared by melt extrusion. Morphology observation showed the domain size of the dispersed phase was significantly reduced with the addition of PEEK-b-PI having optimized block length, which suggested reduced interfacial tension and enhanced interfacial adhesion. The compatibilizing effect was further proven by the change of the glass transition temperature of PEEK and TPI, which shifted closer to each other. As a result, the mechanical properties of PEEK/TPI blends were significantly improved with the addition of the PEEK-b-PI. In particular, 5 wt% content of PEEK-b-PI can increase the elongation at break of the blend by about 200%.  相似文献   

9.
10.
Viscosity measurements were carried out on corn starch (CS) and CS–sodium alginate (SA) suspensions at low levels of SA [1 to 10% (w/w)], as a function of temperature. The addition of SA caused the granular CS gelatinization process to occur at a lower onset temperature. CS and CS–SA mixtures were extruded in single‐ and twin‐screw extruders, with 15% glycerol and different water contents. Processing of plasticized CS–SA mixtures required lower temperatures, which is consistent with the viscosity results. Homogeneous and flexible extrudates were obtained by processing in a twin‐screw extruder. Samples in the composition range between 0 and 10% (w/w) SA were examined using tensile tests as a function of water content. Mechanical properties were dependent on the water content and on the SA composition. A significant increase in the Young's modulus value was observed for the blend containing 1% SA. Dynamic mechanical analysis was carried out for CS and CS–SA blends. Two transitions were detected in the temperature range –80 to 150°C. Scanning electron microscopy was used to examine the morphology of the extruded samples. The surfaces of the films were homogeneous, which demonstrated that the CS granules in all samples were characteristically destructured under the conditions used in processing. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 412–420, 2001  相似文献   

11.
In this work, the processing and properties of blown films prepared from thermoplastic corn starch (TPS) and polycaprolactone (PCL) were studied, in particular at high TPS content. The influence of processing parameters and material moisture content on the tensile properties was also studied. The results show that final film properties are mainly controlled by the draw ratio, blow‐up ratio and PCL concentration in the blends. The results also show that PCL/TPS films are less hydrophilic as PCL content increases. Finally, it was found that a very narrow processing window exists for this blend. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

12.
Thermoplastic starch (TPS), as a natural based polymer, is known to have the capability to be used in biological applications due to its biocompatibility and biodegradability. In this study, mechanical properties of TPS are enhanced by incorporating bioactive β-tricalcium phosphate (β-TCP) particles for bone tissue engineering applications. Starch-based nanocomposites containing 3, 5, and 10 wt% of β-TCP nanoparticles (TT3, TT5, TT10) were made using a co-rotating twin-screw extruder. Dynamic light scattering (DLS) and X-ray diffraction (XRD) techniques were employed to analyze the nanocomposites. Moreover, degradability, swelling degree, and biomineralization in a simulated body fluid (SBF) were studied. To investigate the dispersion of β-TCP nanoparticles in the composite and biomineralization of the nanocomposites after incubation in SBF, scanning electron microscopy (SEM) and energy dispersive X-Ray analysis (EDX) were performed. Evaluation of mechanical properties of TPS and nanocomposites demonstrated that increase in β-TCP content enhanced mechanical properties. Besides, the bioactivity of these three nanocomposite materials was proven by nucleation of hydroxyapatite on the samples’ surface after incubation in simulated body fluid (SBF). Cytotoxicity test was done as well. Results of the current study have paved the way for the application of TPS/β-TCP composite as bone tissue engineering material.  相似文献   

13.
Co-continuous morphology development in partially miscible PMMA/PC blends   总被引:1,自引:0,他引:1  
Poly(methyl methacrylate) (PMMA)/polycarbonate (PC) partially miscible blends were produced via melt blending in an internal mixer over the entire range of composition at two different viscosity ratios. The morphology of this low interfacial tension system was investigated by scanning electron microscopy, solvent extraction/gravimetry and surface area measurement (BET) after selective extraction. The partial miscibility of these blends was evaluated by Tg measurements from dynamic mechanical thermal analysis. The co-continuous morphology development curve obtained from gravimetry is commonly reported in the literature as the %continuity vs. the vol% fraction of the dispersed phase for fully phase separated systems. Such systems possess pure phases of A and B. Partially miscible blends on the other hand demonstrate immiscibility between an A-rich phase and a B-rich phase. Quantitative estimation of the partial composition of the minor components in each respective rich phase was calculated using the Fox equation. Using this data, an approach to correcting the gravimetry results to take into account the partial miscibility of the PMMA/PC system is proposed. The co-continuous morphology development curve is then presented as the %continuity vs. the vol% fraction of the PMMA-rich phase. This corrected curve demonstrates the features of a highly interacting polymer blend: a low percolation threshold and a broad co-continuity region. The BET technique shows that the pore size of the extracted co-continuous blends is dependent on composition, the pore diameter increases with total PMMA content. Use of a low molecular weight PC shifts the co-continuous morphology development curve to higher volume fraction values of PMMA-rich phase. It is suggested that this is the result of a lower dispersed phase thread stability due to the lower matrix viscosity.  相似文献   

14.
S.H. Lee  C.B. Park 《Polymer》2010,51(5):1147-665
This paper reports the effect of nanosilica (SiO2) on the morphology of co-continuous immiscible polypropylene (PP)/polyolefin elastomer (POE) blends. The unfilled blends display phase inversion and a co-continuous structure at a ratio of 50/50 PP/POE by weight. Upon addition of SiO2 in the presence of maleated PP compatibilizer a finer structure, consisting of elongated POE particles dispersed within the PP phase is obtained. This transformation is associated to the presence of finely dispersed SiO2 particles that are localized exclusively within the PP matrix. The impact properties, flexural and Young's moduli of the blends increase significantly, pointing to a synergistic effect arising from the presence of the reinforced PP phase, containing high amounts of the finely dispersed elastomeric phase.  相似文献   

15.
Blends of polycaprolactone (PCL)/gelatinized starch and polybutylene succinate adipate/gelatinized starch have been prepared in various ratios and their phase morphology and thermal/mechanical properties have been analyzed. For both the PCL/plasticized starch and polybutylene succinate adipate/plasticized starch blends the resistance to impact increased with increasing polyester content, and the tensile modulus reached a maximum at around 80 wt % polyester content. In blends containing up to 70 wt % polyester (as observed by scanning electron microscopy) a hierarchical dispersion of the gelatinized starch phase was observed (distinct domain sizes of those less than 5 μm and those greater than 15 μm) and in the blends containing 70–90 wt % polyester a more singular dispersed phase of gelatinized starch was observed within the polyester matrix. Dynamical mechanical analysis results showed some phase mixing was present in the PCL/gelatinized starch blends noted by the appearance of an additional tan δ peak located between the glass transition temperatures of the respective components and broadening of the low temperature transition corresponding to the Tg of the polyester (possibly the result of a starch‐rich polyester phase) with some overlap with the low temperature β transition of the gelatinized starch itself. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 802–811, 2007  相似文献   

16.
Two maize flours (standard and waxy grades) were plasticized in an internal mixer with a constant amount of water and two glycerol contents. The resulting thermoplastic flours (TPFs) were characterized in dynamic oscillatory shear and creep/recovery rheometry. They displayed two different behaviors: the viscoelastic behavior of a high‐molecular‐weight polymer for the first one and a gel‐like behavior for the second one. The TPFs were then mixed with a copolyester [poly(butylene adipate–terephtalate)]. All of the blends contained the same volume fractions and were prepared with the same mixing conditions. The morphology and rheological behavior of each blend were characterized. Different morphologies, ranging from cocontinuous to nodular, were observed. In fixed mixing conditions, the blend morphology was shown to be governed by the rheological behavior of the starchy phase and the plasticizer content. The gel‐like behavior of the second TPF seemed to prevent droplet coalescence; this led to a very fine dispersion. The rheological behavior of each blend appeared to be linked to both the morphology and the rheological behavior of the two phases. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40222.  相似文献   

17.
《Polymer》2003,44(11):3381-3387
Tensile mechanical properties of polypropylene (PP)/cycloolefin copolymer (COC) blends were studied using an Instron tensile tester. As COC was expected to impart enhanced mechanical properties to the blends, their modulus, yield strength, tensile strength and tensile energy to break were measured as functions of blend composition. With regard to the reported sensitivity of the COC structure to thermal history, the influence of annealing at two different temperatures was also tested. The attention was primarily concentrated on blends with the volume fraction of COC in the interval 0<v2<0.40, where COC formed (short) fibres almost uniaxially oriented in the direction of injection moulding. In the interval 0.40<v2<0.75, the blends consisted of partially co-continuous components. Two different models were applied in the analysis of mechanical properties, namely (i) the rule of mixtures for fibre composites and (ii) the equivalent box model for isotropic blends (employing the data on the phase continuity of components obtained from modified equations of the percolation theory). Experimental data on the studied mechanical properties were better fitted by the models for fibre composites. Annealing of the samples (75 °C for 45 days; 120 °C for 3 h) did not markedly affect the tensile modulus, yield stress, and stress at break of the blends. On the other hand, the strain at break was markedly reduced by the annealing up to v2=0.2; COC and the blend with 75% of COC ruptured in a brittle manner without yielding.  相似文献   

18.
Potato starch was radiolytically degraded to different extents by irradiating with Co‐60 gamma radiation in wide dose range. The degraded starch was plasticized using glycerol and water to obtain radiation processed thermoplastic starch (RTPS). Blends of different RTPS and low density polyethylene (LDPE) were prepared by internal melt mixing. Characterization of blends using differential scanning calorimetry, thermogravimetric analysis, X‐ray diffraction, Fourier transformed infrared spectroscopy, scanning electron microscope, melt flow, contact angle, and soil burial studies indicated changes in the blend morphology and biodegradation behavior with the increase in the dose imparted to the starch fraction. Molecular weight of starch decreased substantially in the dose range of the study. The melt viscosity of LDPE/RTPS blend decreased whereas crystallinity of LDPE phase increased with the incorporation of RTPS. No significant change in the carbonyl index and thermal stability of the blends was observed in the dose range studied; therefore, the observed changes in the physical and thermal properties of the blends were attributed primarily to the kinetic factors affecting crystallization and time‐dependent phase separation process. Biodegradability of blends varied with the radiation dose imparted to starch component of blend, suggesting better encapsulation of RTPS by LDPE chains. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

19.
An entirely biosourced blend composed of poly(lactic acid) (PLA), starch, and wood flour (WF) was prepared by a co‐extruder with glycerol as a plasticizer. The morphology, rheological properties, and mechanical properties of the WF/starch/PLA blends were comprehensively analyzed. The results showed that with the decrease of the starch/WF ratio, the morphology experienced a large transformation, and the compatibility of the blends was found to be superior to other blends, with a starch/wood flour ratio of 7/3. The dynamic mechanical thermal analysis (DMA) results demonstrated the incompatibility of the components in WF/starch/PLA blends. Following the decrease of the starch/WF ratio, the storage modulus (G″) and the complex viscosity (η*) of the blends increased. The mechanical strength first increased, and then decreased with the increase of the WF concentration. The water absorption results showed that the water resistance of the blends was reduced with the lower starch/WF ratio. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44743.  相似文献   

20.
The toughening of polyethylene terephthalate (PET)/amorphous copolyester (PETG) blends using a maleic anhydride grafted mixture (TPEg) of polyethylene‐octene elastomer and a semicrystalline polyolefin plastic (60/40 by weight) was examined. The TPEg was more effective in toughening PETG than PET, although the dispersion qualities of the TPEg particles in PET and PETG matrices were very similar. At the fixed TPEg content of 15 wt %, replacing partial PET by PETG resulted in a sharp brittle‐ductile transition when the PETG content exceeded the PET content. Before the transition, PET/PETG blends were not toughened with the TPEg of 15 wt %, whereas after the transition, the PET/PETG blends with 15 wt % of TPEg, similar to the PETG/TPEg (85/15) binary blend, maintained a super‐tough level. The impact‐fractured surfaces of the PET/PETG/TPEg blends were also evaluated. When PETG content was lower than PET content, the ternary blend showed a brittle feature in its impact‐fractured surface, similar to the PET/TPEg (85/15) binary blend. While PETG content exceeded PET content, however, the impact‐fractured surface of the ternary blend was very similar to that of PETG/TPEg (85/15) binary blend, exhibiting intensive cavitation and massive matrix shear yielding, which were believed to be responsible for the super‐tough level of the blends. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 797–805, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号