首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbon nanotubes (CNTs) have attracted tremendous attention in recent years because of their superb optical, electronic and mechanical properties. In this article, we aim to discuss CNT-induced polymer crystallization with the focus on the newly discovered nanohybrid shish-kebab (NHSK) structure, wherein the CNT serves as the shish and polymer crystals are the kebabs. Polyethylene (PE) and Nylon 6,6 were successfully decorated on single-walled carbon nanotubes (SWNTs), multi-walled carbon nanotubes (MWNTs), and vapor grown carbon nanofibers (CNFs). The formation mechanism was attributed to “size-dependent soft epitaxy”. Polymer CNT nanocomposites (PCNs) containing PE, Nylon 6,6 were prepared using a solution blending technique. Both pristine CNTs and NHSKs were used as the precursors for the PCN preparation. The impact of CNTs on the polymer crystallization behavior will be discussed. Furthermore, four different polymers were decorated on CNTs using the physical vapor deposition method, forming a two-dimensional NHSK structure. These NHSKs represent a new type of nanoscale architecture. A variety of possible applications will be discussed.  相似文献   

2.
Recent developments in the field of water-soluble polymers aimed at enhancing the aqueous solution viscosity are reviewed. Classic and novel associating water-soluble polymers for enhanced oil recovery (EOR) applications are discussed along with their limitations. Particular emphasis is placed on the structure–property correlations and the synthetic methods. The observed rheological properties are conceptually linked to the polymer chemical structure (1) and topology (2). In addition, the influence of external parameters, e.g. temperature, pH, salt, and surfactant, on the rheological behavior is reviewed. Progress booked in deeper understanding of the structure–property relationship is thoroughly discussed. Furthermore, a critical overview of the synthetic methods as well as of the solution properties of these polymers is provided. In this respect the influence of “internal” (i.e. chemical structure) and “external” (vide supra) factors on these properties provide a conceptual toolbox for the rationalization of the response of water-soluble polymers to external stimuli. In turn, such rationalization constitutes the basis for the design of new polymeric structures for EOR applications.  相似文献   

3.
Two simple and effective methods, “click” chemistry and supramolecular interactions, are demonstrated here to synthesize well-defined poly(l-lactide) (PLLA) functionalized graphene oxide (GO) sheets. We provide a simple method to introduce azide groups on GO sheets by the ring opening reaction of sodium azide with the epoxide groups of GO. The GO-N3 sheets can easily undergo “click” reaction with alkyne-terminated PLLA by “grafting onto” method to produce GO/PLLA composites with high grafting ratio and exfoliated structure. Interestingly, GO-N3 can be grafted with oxygen-containing polymers such as PLLA, polymethyl methacrylate (PMMA) or polyethylene oxide (PEO) via supramolecular interactions between the azide groups and these oxygen atoms on polymers, producing GO/polymer composites with low grafting ratio and intercalated structure. These “grafting onto” methods are useful to produce a variety of GO/polymer composites with different structure via “click” reaction or supramolecular interactions, which have potential applications in material science.  相似文献   

4.
Guo-Jian Wang  Yao Wang  Lin Liu  Jun Qiu  Yan Li 《Polymer》2007,48(3):728-733
Water-soluble single-walled carbon nanotubes (SWNTs) were synthesized by grafting poly(acrylamide) (PAM) from the surface of SWNT via reversible addition-fragmentation chain transfer (RAFT) polymerization. The RAFT agents were covalently attached to the SWNTs by functionalizing SWNTs with in situ generated diazonium compounds. The product was characterized by means of FT-IR, Raman, 1H NMR, TGA and TEM. The results showed that PAM chains had successfully grafted from SWNT by RAFT polymerization. The amount of PAM grown from SWNT increased with the polymerization time. The acrylamide conversion increased linearly with the polymerization time, indicating the “living” characteristics of the RAFT polymerization. TEM was utilized to image PAM-g-SWNT, showing relatively uniform polymer coatings present on the surface of individual, debundled nanotubes.  相似文献   

5.
Poly(o-methylaniline) (POTO), poly(o-methoxyaniline) (POAS), poly(2,5-dimethylaniline) (PDMA), poly(2,5-dimethoxyaniline) (PDOA), and nanocomposite based on multi-walled carbon nanotubes (MWNTs) and single-walled carbon nanotubes (SWNTs) embedded in these conducting polymers, were synthesized by oxidative polymerization. We used the Langmuir-Schaefer (LS) technique to fabricate films at the air-water interface and performed the doping process on the undoped films by dipping the substrates in 1 M hydrochloric acid (HCl) aqueous solution. We recorded UV-vis spectra for both the undoped and doped forms and calculated the related band gaps by using the Tauc equation. Experimental data showed the substituents affected the final oxidation ratio of the polymer chains and the presence of carbon nanotubes (CNTs) in the medium of reaction changed the properties in relation of the kind and number of substituents along the aromatic ring. The study of UV-vis spectra of the undoped nanocomposites and the calculated band gaps highlighted that the conducting polymer chains simply wrapped up around CNTs with no strong interaction. Both the kind and number of substituents along the aromatic rings strongly affected the protonation process, since their capability of “tuning” the formation of the polaronic state. The presence of CNTs in the polymer matrix showed no appreciable influence in the chemical properties of the doped nanocomposites with respect to the pure conducting polymers.  相似文献   

6.
Luca Valentini 《Polymer》2005,46(17):6715-6718
The adsorption of several types of conducting polymers on carbon nanotubes is investigated by electrical transport measurements. We report the optoelectronic properties occurring in single-walled carbon nanotubes (SWNTs) conjugated polymer, poly(3-octylthiophene), composites. Al/polymer-nanotube composite/indium-tin oxide diodes show photovoltaic behavior proposing that the main reason for this increase is the photoinduced electron transfer at the polymer/nanotube interface. Interesting results were obtained in the case of poly(o-anisidine) (POAS)-multi-walled nanotubes (MWNTs) composites where the increment of monolayers results in a significant improvement of the specific conductivity. POAS-coated MWNTs thin films demonstrated their potentiality as a new class of materials for inorganic vapors detection for environmental applications.  相似文献   

7.
Polymeric composite materials filled with single-walled carbon nanotubes (SWNTs) have attracted much attention, but successful applications of such composites require uniform dispersion of SWNTs in the polymeric matrix and the strong SWNTs-polymer interface interaction. In this paper, chemical modification combined with ultrasonically initiated in situ polymerization was successfully employed to prepare poly(styrene-co-butyl acrylate)/single-walled carbon nanotubes composites [P(St-BA)/SWNTs]. The whole procedure contained two steps: in the first step, 3-(trimethoxy)-propylmethacrylate-silane (silane-coupling agent, KH570), a kind of polymerizable vinyl monomer, was grafted onto the surface of SWNTs, forming KH570-g-SWNTs by reacting KH570 with hydroxyl groups on the surface of SWNTs, which was proved by combination of FTIR and XPS results. Due to the presence of polymerizable KH570 on the surface of SWNTs, this provides a basis for the next stage of polymerization to prepare polymer-encapsulated SWNTs composites. In the second step, an ultrasonically initiated in situ emulsion polymerization of monomer styrene (St) and n-butyl acrylate (BA) proceeded in the presence of KH570-g-SWNTs. Consequently, P(St-BA)/SWNTs composite emulsion was obtained. TEM confirmed that SWNTs were coated with the obtained polymer. FTIR and XPS further showed that even after 72 h of soxhlet extraction with boiling toluene, there were still unextracted polymers in P(St-BA)/SWNTs composite, indicating strong interaction between the polymer and carbon nanotubes. Finally, a mechanism for formation of polymer-encapsulated SWNTs through ultrasonically initiated in situ emulsion polymerization was proposed. This study could provide a new way to resolve the problems of the dispersion, stabilization, and compositing of SWNTs with polymer matrix and prepare polymer/SWNTs composites.  相似文献   

8.
Low color, flexible, space environmentally durable polymeric materials possessing sufficient surface resistivity (106-1010 Ω/square) for electrostatic charge (ESC) mitigation are of interest for potential applications on Gossamer spacecraft as thin film membranes on antennas, large lightweight space optics, and second surface mirrors. One method of incorporating intrinsic ESC mitigation while maintaining low color, flexibility, and optical clarity is through the utilization of single-walled carbon nanotubes (SWNTs). However, SWNTs are difficult to uniformly disperse in the polymer matrix. The approach reported herein employed amide acid polymers endcapped with alkoxysilane groups that could condense with oxygen containing functionalities that were present on the ends of SWNTs as a result of the oxidative purification treatment. These SWNTs were combined with the endcapped amide acid polymers in solution and subsequently cast as unoriented thin films. Two examples possessed electrical conductivity (measured as surface resistance and surface resistivity) sufficient for ESC mitigation at loading levels of ≤0.08 wt% SWNT as well as good retention of thermo-optical properties. The percolation threshold was determined to lie between 0.03 and 0.04 wt% SWNT loading. Electrical conductivity of the film remained unaffected even after harsh mechanical manipulation.  相似文献   

9.
A new method was developed to disperse carbon nanotubes (CNTs) in a matrix polymer and then to prepare composites by melt processing technique. Due to high surface energy and strong adsorptive states of nano-materials, single-walled carbon nanotubes (SWNTs) were adsorbed onto the surface of polymer powders by spraying SWNT aqueous suspected solution onto fine high density polyethylene (HDPE) powders. The dried SWNTs/powders were blended in a twin-screw mixture, and the resulting composites exhibited a uniformly dispersion of SWNTs in the matrix polymer. The electrical conductivity and the rheological behavior of these composites were investigated. At low frequencies, complex viscosities become almost independent of the frequency as nanotubes loading being more than 1.5 wt%, suggesting an onset of solid-like behavior and hence a rheological percolation threshold at the loading level. However, the electrical percolation threshold is ∼4 wt% of nanotube loading. This difference in the percolation thresholds is understood in terms of the smaller nanotube-nanotube distance required for electrical conductivity as compared to that required to impede polymer mobility. The measurements of mechanical properties indicate that this processing method can obviously improve the tensile strength and the modulus of the composites.  相似文献   

10.
Periodic patterning of carbon nanotubes (CNTs) with semi-crystalline polymers, especially the novel nanohybrid shish kebab (NHSK) superstructure, in which fibrous CNTs act as shish while polymer lamellae as kebab, is of interest both scientifically and technologically. So far the reported NHSK are mostly prepared using polymers with zigzag conformation in crystal and it seems difficult to obtain NHSK using polymer with helical conformation. In this work, we report the formation of NHSK structure by using single-walled carbon nanotube (SWNT) bundles. A promoted formation of NHSK was observed even using polymer with helical conformation, and the formation mechanism of NHSK was attributed to the unique “groove structure” formed by the stacked SWNTs in parallel arrays, which could facilitate the orientation of helical polymer chains along the SWNTs axis and the lateral formation of stable nucleus. The NHSK structure in helical polymer/SWNT bundles system could widen application of this unique superstructure, offering value in both application field and crystallography aspect as well.  相似文献   

11.
PolyHIPEs: Recent advances in emulsion-templated porous polymers   总被引:1,自引:0,他引:1  
Porous polymers with well-defined porosities and high specific surface areas in the form of monoliths, films, and beads are being used in a wide range of applications (reaction supports, separation membranes, tissue engineering scaffolds, controlled release matrices, responsive and smart materials) and are being used as templates for porous ceramics and porous carbons. The surge in the research and development of porous polymer systems is a rather recent phenomenon. PolyHIPEs are porous emulsion-templated polymers synthesized within high internal phase emulsions (HIPEs). HIPEs are highly viscous, paste-like emulsions in which the major, “internal” phase, usually defined as constituting more than 74% of the volume, is dispersed within the continuous, minor, “external” phase. This review focuses upon the recent advances in polyHIPEs involving innovations in polymer chemistry, macromolecular structure, multiphase architecture, surface functionalization, and nanoparticle stabilization. The effects of these innovations upon the natures of the resulting polyHIPE-based materials (including bicontinuous polymers, nanocomposites, hybrids, porous ceramics, and porous carbons) and upon the applications involving polyHIPEs are discussed. The advances in polyHIPEs described in this review are now being used to generate new families of porous materials with novel porous architectures and unique properties.  相似文献   

12.
Single‐walled carbon nanotubes (SWNTs) have unique properties such as high electrical conductivity and high tensile strength. Their composites with polymers have a great role in new sciences such as organic solar cells and ultrastrong lightweight materials. In this article, molecular dynamic simulations with polymer consistent force field are performed to study the interaction between SWNTs and conjugated polymers including poly(2‐methoxy‐5‐(3‐7‐dimethyloctyloxy)‐1,4‐phenylenevinylene) (MDMO‐PPV), poly(3‐hexythiophene) (P3HT), and poly[(9,9′‐dioctylfluorenyl‐2,7‐diyl)‐co‐bis(N,N′‐(4,butylphenyl))bis(N,N′‐phenyl‐1,4‐phenylene)diamine] (PFB). We computed the interaction energy and morphology of polymers adsorbed to the surface of SWNTs was studied by the radius of gyration (Rg). The influence of important factors such as SWNT radius, chirality, and the temperature on the interfacial adhesion of SWNT–polymer and Rg of polymers were studied. We found that the strongest interaction between the SWNTs and these polymers was, first observed for P3HT, then MDMO‐PPV, and finally PFB. Our results showed that the interaction energy is influenced by SWNT radius and the specific monomer structure of the polymers, but the effects of chirality and temperature are very weak. In addition, we found that the temperature, chirality, and radius have not any important effect on the radius of gyration. POLYM. COMPOS.,, 2012. © 2012 Society of Plastics Engineers  相似文献   

13.
The photoluminescence (PL) intensity of a single-wall carbon nanotube (SWNT) is calculated for each (nm) by multiplying the photon-absorption, relaxation and photon-emission matrix elements. The intensity depends on chirality and “type I vs type II” for smaller diameter semiconducting SWNTs (less than 1 nm). By comparing the calculated results with the experimental PL intensity of SWNTs prepared by chemical vapor deposition at different temperatures, we find that the abundance of (nm) nanotubes with smaller diameters should exhibit a strong chirality dependence, which may be related to the stability of their caps.  相似文献   

14.
Computational modeling was utilized to design complex polymer networks and gels which display enhanced and tunable mechanical properties. Our approach focuses on overcoming traditional design limitations often encountered in the formulation of simple, single polymer networks. Here, we use a coarse-grained model to study an end-linked flexible polymer network diluted with branched polymer solvent chains, where the latter chains are composed of rigid side-chains or “spikes” attached to a flexible backbone. In order to reduce the entropy penalty of the flexible polymer chains these rigid “spikes” will aggregate into clusters, but the extent of aggregation was shown to depend on the size and distribution of the rigid side-chains. When the “spikes” are short, we observe a lower degree of aggregation, while long “spikes” will aggregate to form an additional secondary network. As a result, the tensile relaxation modulus of the latter system is considerably greater than the modulus of conventional gels and is approximately constant, forming an equilibrium zone for a broad range of time. In this system, the attached long “spikes” create a continuous phase that contributes to a simultaneous increase in tensile stress, relaxation modulus and fracture resistance. Elastic properties and deformation mechanisms of these branched polymers were also studied under tensile deformation at various strain rates. Through this study we show that the architecture of this branched polymer can be optimized and thus the elastic properties of these advanced polymer networks can be tuned for specific applications.  相似文献   

15.
M. Mar Bernal 《Polymer》2011,52(25):5739-5745
A simple and single-step “grafting to” approach based on the Diels-Alder (DA) reaction is described to functionalize multi-wall carbon nanotubes (MWCNTs) with polystyrene (PSt). Thus, several fluorescent and furfuryl functionalized PSts, synthesized by the atom transfer radical polymerization (ATRP) of styrene, furfuryl methacrylate and low proportion of a fluorescent monomer, were covalently attached onto the pristine nanotubes. Furfuryl (diene) groups allowed the chemical attachment of the PSt polymer onto the as-synthesized MWCNTs by a DA reaction. On the other hand, the incorporation of fluorescent groups in the polymer has two main advantages. It permits to determine the attachment of the polymer onto the nanotubes and, in further applications, it will allow to follow the dispersion of these modified MWCNTs in a matrix. The efficiency of the functionalization was verified by FTIR, Raman spectroscopy, TEM, AFM and fluorescence techniques.  相似文献   

16.
This article summarizes recent examples for precise synthesis of (co)polymers containing functional end groups prepared by living ring-opening metathesis polymerization (ROMP) using molybdenum, ruthenium complex catalysts. In particular, this article reviews recent examples for synthesis of amphiphilic block/graft copolymers by adopting transition metal-catalyzed living ROMP technique. Unique characteristics of the living ROMP initiated by the molybdenum alkylidene complexes (so-called Schrock type catalyst), which accomplish precise control of the block segment (hydrophilic and hydrophobic) as well as exclusive introduction of functionalities at the polymer chain end, enable us to provide the synthesis of block copolymers varying different backbones by adopting the “grafting to” or the “grafting from” approach as well as “soluble” star shape polymers with controlled manner. The “grafting through” approach (polymerization of macromonomers) by the repetitive ROMP technique offers precise control of the amphiphilic block segments.  相似文献   

17.
An ultraviolet light initiated “graft from” polymerization method to fabricate polymer‐functionalized single wall carbon nanotubes (SWNTs) with pendant pH‐ and temperature‐responsive polymer chains is utilized. The attached polymer chains, formed from methacrylic acid and poly(ethylene glycol) methyl ether methacrylate monomers, are well established for its pH‐responsive swelling/deswelling behavior. This special property was utilized here to control the aqueous dispersibility of the carbon nanotubes. Furthermore, poly(N‐isopropylacrylamide), a temperature‐responsive polymer, was utilized in the fabrication of SWNTs whose dispersibility was dependent on solution temperature. The morphology of the polymer‐functionalized carbon nanotubes was characterized by scanning electron microscopy (SEM) before and after functionalization. Environmental SEM was used to further characterize the morphology of the functionalized SWNTs. In addition, covalent bonding of the polymer to the carbon nanotube surface was established using Raman and Fourier transform infrared spectroscopic techniques. The physical and chemical properties of the functionalized nanotubes were further characterized by energy‐dispersive X‐ray spectroscopy, thermogravimetric analysis, and differential scanning calorimetry. © 2011 American Institute of Chemical Engineers AIChE J, 58: 2980–2986, 2012  相似文献   

18.
In this work well uniform dispersion of single-walled carbon nanotubes (SWNTs) in isotactic polypropylene (iPP) was achieved by shear mixing. The results obtained from the differential scanning calorimetry curves indicate that the addition of low SWNT amounts (less than 1 wt%) led to an increase in the rate of polymer crystallization with no substantial changes in the crystalline structure, as confirmed by X-ray diffraction. The tensile mechanical properties showed that Young’s modulus and tensile strength considerably increase in the presence of nanotubes, with a maximum for 0.75 wt%. The reinforcing effect of SWNTs was also confirmed by dynamic mechanical analysis where, by adding nanotubes, a noticeable increase in the storage modulus was detected. The beneficial effects of SWNT incorporation was underlined comparing the results obtained with those of carbon black used as a filler.  相似文献   

19.
The incorporation of purified high-pressure carbon monoxide prepared single-walled carbon nanotubes (HiPco SWNTs) into the bulk of space environmentally durable polymers at loading levels ≥0.05 wt% has afforded thin films with surface and volume resistivities sufficient for electrostatic charge mitigation. However, the optical transparency at 500 nm decreased and the solar absorptivity increased with increased SWNT loading. Besides showing a loading dependency, these properties were also dependent upon film thickness. The absorbance of the films at 500 nm as a function of SWNT loading and film thickness was determined to follow the classic Beer-Lambert law. Based on these results, a simple empirical relationship was derived to provide a predictive approximation of these properties. The molar absorptivity determined for the purified HiPco SWNTs dispersed in the polymer by this simple treatment was of the same order of magnitude to reported solution determined values for HiPco SWNTs.  相似文献   

20.
Replacing traditional liquid electrolytes by polymers will significantly improve electrical energy storage technologies. Despite significant advantages for applications in electrochemical devices, the use of solid polymer electrolytes is strongly limited by their poor ionic conductivity. The classical theory predicts that the ionic transport is dictated by the segmental motion of the polymer matrix. As a result, the low mobility of polymer segments is often regarded as the limiting factor for development of polymers with sufficiently high ionic conductivity. Here, we show that the ionic conductivity in many polymers can be strongly decoupled from their segmental dynamics, in terms of both temperature dependence and relative transport rate. Based on this principle, we developed several polymers with “superionic” conductivity. The observed fast ion transport suggests a fundamental difference between the ionic transport mechanisms in polymers and small molecules and provides a new paradigm for design of highly conductive polymer electrolytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号