首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
目的 提高锂离子电池TiO2负极的电化学性能.方法 采用微弧氧化技术在钛箔表面制备TiO2膜,再通过磁控溅射技术在TiO2膜上沉积Si/SiO2,制备出一种富含硅元素的微弧氧化复合膜.将该复合膜作为锂离子电池负极,锂片为对电极,组装电池.采用电池测试系统测量电池容量、循环稳定性等性能,通过电化学工作站获得循环伏安曲线、电化学阻抗谱等特性.结果 复合膜的组成为TiO2/SiO2/Si,呈现多孔状形貌.TiO2、SiO2和Si都参与了与锂离子的氧化还原反应,在100μA/cm2的电流密度下,经100圈循环后,复合膜负极的比容量保持在530(mA·h)/g左右,且在1000μA/cm2的大电流密度条件下,充放电后,复合膜负极的比容量能够恢复到初始值的95%,表现出较高的比容量、良好的循环稳定性和倍率性能,复合膜负极性能明显优于以纯TiO2为负极的锂离子电池.结论 在钛箔表面,微弧氧化技术可高效地制备多孔状、无粘结剂的TiO2负极材料,与磁控溅射技术相结合,可进一步制备出高容量的复合膜负极,具有良好的应用前景.  相似文献   

2.
采用嵌段聚合物型表面活性剂P123作为结构导向剂,利用溶胶-凝胶方法制备出纳米TiO2作为合成Li4Ti5O12锂离子电池负极材料的原料之一.然后采用湿法球磨辅助的固相反应合成方法,以丙酮作为球磨介质,制备出Li4Ti5O12锂离子电池负极材科,并对所制备的Li4Ti5O12电极材料进行扫描电镜SEM、透射电镜TEM、粉末X射线衍射(XRD)、循环伏安(CV)以及循环性能测试.电化学性能测试表明所制各出的锂离子电池负极材料Li4Ti5O12具有较高的放电比容量和优异的循环性能.在电流密度为16 mA/g时首次放电比容量为155 mAh/g,首次库仑效率为98.3%.300次循环结束时放电比容量仍可达150.8 mAh/g,约为首次放电比容量的97.3%,300次循环容量仅衰减了2.7%.  相似文献   

3.
以羰基钴为原料,采用简易超声法制备氧化亚钴和石墨烯纳米复合结构。通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)及光电子能谱(XPS)对该纳米复合结构进行表征。结果表明:粒径为3~5nm的氧化亚钴纳米颗粒均匀分布于石墨烯表面。将氧化亚钴/石墨烯纳米复合结构用作锂离子电池负极材料,电化学测试结果表明,该复合结构具有高电容量(50次循环后电容量为650mA·h/g,约是商用石墨电极的2倍)、高库伦效率(高于95%)以及很好的循环稳定性。该优异的电化学性能源于氧化亚钴/石墨烯纳米复合结构的特点:纳米尺寸的氧化亚钴颗粒分散于导电的石墨烯衬底上,有利于锂离子的嵌入和脱嵌,缩短了锂离子的扩散路径,提高了氧化物的导电性,从而改善了材料的电性能。  相似文献   

4.
采用溶剂热和碳化法制备了氮掺杂碳包覆的MoSe_(2)(MoSe_(2)@N-C)纳微花球材料。氮掺杂碳保护层的引入和独特的纳微花球结构能够实现快速的电荷转移和离子传输,并有助于减缓嵌脱锂离子过程中材料的体积变化,提供较为稳定的电化学反应界面。结果表明:得益于碳包覆以及独特的纳微花球状结构,MoSe_(2)@N-C材料ge现出了优异的储锂性能,在200 mA/g的电流密度下循环150次后,MoSe_(2)@N-C材料拥有高达470 mA·h/g的可逆放电容量;即使在500 mA/g的电流密度下,该材料仍然表现出优异的循环稳定性。而在同样的条件下,纯MoSe_(2)材料容量的急剧衰减,放电容量仅维持在低于100 mA·h/g。由于独特的纳微花球结构以及MoSe_(2)和氮掺杂碳层之间的协同作用,MoSe_(2)@N-C复合材料表现出大大优于纯MoSe_(2)材料的可逆容量、倍率性能和循环稳定性。  相似文献   

5.
《金属功能材料》2009,16(6):70-70
美国Brattleboro的Cheap电子管公司新近在锂离子电池中采用了一种新型导电性纳米管复合材料添加剂,从而提高了电极涂层的摇实密度并延长了锂离子电池中的电极寿命。这种纳米复合材料添加剂是由碳纳米管和细颗粒状电极导电性添加剂所组成。这种添加剂很容易分散于锂离子电池电极材料中,在碳纳米管与细颗粒状电极材料之间的协合作用对于改善电池的放电容量和延长循环寿命起着重要作用。  相似文献   

6.
以金红石型TiO2、Li2CO3和Al2O3为原料,采用高温固相法制备锂离子电池负极材料Li4Ti5O12和Li4AlxTi5-xO12(x=0,0.025,0.05,0.1,0.2,0.4)。利用X射线衍射仪、扫描电镜、半电池充放电测试和交流阻抗测试研究材料的物相、结构、形貌以及电化学性能。结果表明:Al掺杂不会改变Li4AlxTi5-xO12的尖晶石结构,但会导致材料颗粒尺寸增大;适当Al掺杂后,材料的循环稳定性和极化性能得到改善,充放电比容量和可逆比容量不同程度降低;Li4Al0.025Ti4.975O12具有最优的电化学性能,0.1C倍率下首次充电比容量达到156.7 mA.h/g。  相似文献   

7.
针对废旧锂离子电池数量不断增加的现状,对废旧LiCoO2电池的回收和再生流程进行探究。以废旧LiCoO2电池为原料,通过预处理,酸浸,共沉淀步骤,实现了LiNi0.8Co0.1Mn.1O2正极材料的再生。ICP-OES分析浸出液中的元素含量,SEM和XRD表征材料形貌和结构,扣式电池的电化学测试定量分析材料的电化学性能。研究表明,利用浸出液可以再生形貌和层状结构良好的正极材料,在0.2C,2.8~4.3V电压范围内进行充放电循环测试,首周放电比容量可达到210.8 mAh/g,经过50周充放电循环后的容量保持率为87%,表现出良好的循环稳定性,为废旧锂离子电池的再生提供支撑和发展方向。  相似文献   

8.
通过镁和氧化亚硅之间的氧化还原反应制备细硅,并采用湿法混料及高温热解法合成了锂离子电池用硅/石墨/裂解碳复合负极材料。利用XRD、SEM、电化学测试考察了复合材料的结构与电化学性能,并结合循环伏安和电化学阻抗技术研究了复合材料的电化学可逆性和动力学性能。结果表明:制备的复合材料首次可逆容量为880 mAh/g,循环40次后为780 mAh/g,容量保持率可达88.6%,该方法显著改善了硅基材料作为锂离子电池负极材料的电化学性能。性能的提高主要归因于纳米结构的硅均匀分散在碳基体中,很好地抑制了充放电过程中的体积效应,同时石墨和裂解碳也充分保证了复合材料良好的导电性。  相似文献   

9.
以FePO4、Li2CO3和葡萄糖为原料,用液氮急速淬火法制备单一橄榄石结构的锂离子电池正极材料LiFePO4/C。结果表明:淬火使得LiFePO4晶格中产生Li空位,有利于提高其电子导电性。淬火样品的一次颗粒细小(100~500 nm),无明显团聚,并形成多孔结构;该样品在1C、2C和4C倍率下的首次放电比容量分别为151.4、138.0和116.7 mA.h/g,循环100次后的容量保持率高达99.3%、98.6%和94.5%。  相似文献   

10.
采用机械球磨法将纳米SnO2和Ni粉末复合,作为锂离子电池负极材料。采用XRD、SEM、TEM和EDS分析球磨过程中材料结构和形貌的变化。对SnO2/Ni复合负极材料的首次库仑效率、循环稳定性及CV曲线等进行测试分析。结果表明:将复合粉末球磨适当时间后,SnO2和Ni可形成结合充分、颗粒尺寸细小、分布均匀的复合材料;SnO2和Ni的复合可有效提高SnO2的首次库仑效率和循环稳定性;SnO2/Ni复合负极材料的循环稳定性随球磨时间的延长而增加,但电极的首次库仑效率随球磨时间的延长呈先增加后下降的趋势;Ni的引入有效减小了SnO2在首次充放电循环过程中生成Li2O的不可逆反应程度,并在随后的循环过程中部分以Li-O化合物的形式进行可逆反应。  相似文献   

11.
Nano/micro-scaled CoSnx alloy powders synthesized via carbothermal reduction at 800 ℃ with different compositions were characterized for anode materials in Li-ion battery. The synthesized spherical CoSnx particles show a loose nano/micro sized particle structural characteristic, which is apparently favorable for the improvement of cycling stability. The prepared CoSn3 alloy composite electrode exhibits a low initial irreversible capacity of ca.130 mAh·g-1 and a high specific capacity of ca.440 mAh·g-1 at constant current density of 100 mA·g-1 . The relatively large particle size is considered to be the main reason for the lower irreversible capacity of CoSn3 electrode.  相似文献   

12.
将核壳的聚吡咯基的碳@碳纳米管(C@CNT)与纳米片组装的氧化镍 (NiO) 微球结合,制备了一种多孔的锂离子电池负极材料(NiO/C@CNT),该材料 (NiO/C@CNT) 与纯的 NiO和 NiO/CNT 相比,其容量值和循环稳定性能明显提高。在 50 mA·g-1的电流密度下,经过20次循环后,其可逆容量达到573 mA·g-1,容量保持率为68.6%。这些性能的提高是由于核壳结构的C@CNT的导电缓冲性引起的。C@CNT具有诸如多孔结构、大比表面积、高电化学活性、高电子导电性和良好的浸润性等许多优点,这些优点有利于避免电极材料显著的体积变化,因此在锂嵌入和脱出过程中可减少电极容量衰减并提高传质速率。  相似文献   

13.
Nano-amorphous TiO2 was prepared by a sol-gel method. The results of X-ray diffraction (XRD) and scanning electron microscopy (SEM) show that the composite electrode material (TiO2-NiO-C) is made of powder with a grain size of 36.2 nm. Doping of nickel and graphite can increase the electrical conductivity and the specific surface area of nano-amorphous TiO2. The electrochemical properties of TiO2-NiO-C,such as self-discharge, leakage current, and cycle life, were studied using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and charge-discharge test. With a charge-discharge current density of 500 mA/g, the specific capacity of the TiO2-NiO-C composite material reaches 12.88 mAh/g. Also, the expense of capacity is only 3.88% after 500 cycles. The electrochemical capacitor with the electrode material of TiO2-NiO-C shows excellent capacity and cycling performance.  相似文献   

14.
作为锂离子电池阳极材料的铁酸镍及其相关材料,由于其具有较高的理论比容量,近来受到广泛关注。为了克服在充放电过程中的较低导电性与较大的体积膨胀等不良因素,本文通过水热法合成了纳米铁酸镍钉扎在石墨表面而形成的复合物。该纳米铁酸镍/石墨复合物表现出了较高的比容量以及优异的循环性能。其初始放电容量接近1478mAh g-1,并且在100 mA g-1的电流密度下循环50周之后,其可逆容量依然高达1109 mAh g-1。在1000 mA g-1的充电电流情况下,该复合材料的充电容量也能保持750 mA g-1。这优异的电化学性能主要归功于纳米铁酸镍能够稳定的钉扎在石墨表面上,这种特殊的结构增强了材料的导电性同时也增大了材料的表面比容量。  相似文献   

15.
Transition metal oxides gain considerable research attentions as potential anode materials for lithium ion batteries, but their applications are hindered due to their poor electronic conductivity, weak cycle stability and drastic volume change. Here, a NiO@graphene composite with a unique 3D conductive network structure is prepared through a simple strategy. When applied as anode material for Li-ion batteries, at 50 mA g-1, the NiO@graphene displays a high reversible capacity of 1366 mAh g-1 and a stable cyclability of 205 mAh g-1 after 500 cycles. Even at a high rate of 10 A g-1, it displays a favorable reversible capacity of 711 mAh g-1. Remarkably, when it recovers back to 0.05 A g-1, a reversible capacity of 1741 mAh g-1 is achieved. Thus, the NiO@graphene composite with 3D structure shows good application prospects as an alternative anode for advanced lithium ion batteries.  相似文献   

16.
实验采用二次阳极氧化法制备高度有序的阵列式TiO2纳米管(TiO2 NTs),分别利用扫描电镜(SEM)、能谱仪(EDS)、X射线衍射仪(XRD)和紫外-可见漫反射光谱仪(UV-vis DRS)对制得的TiO2 NTs的微观形貌及光响应范围进行表征与测试。SEM显示经过二次阳极氧化处理后,TiO2 NTs的形貌发生较大改变,呈现出良好的阵列效果。UV-vis DRS光谱显示光响应范围明显发生红移。将硝基苯作为目标有机污染物,利用TiO2 NTs作为光催化剂对其进行光催化降解。结果显示,TiO2 NTs能有效降解废水中的硝基苯,并且经二次阳极氧化制得的阵列式TiO2纳米管(2-step TiO2 NTs)的光催化活性远远优于经一次氧化的TiO2纳米管(1-step TiO2 NTs),能显著提高对硝基苯的降解效率。推测活性增加的原因是经二次氧化形成的阵列式双层纳米管结构增大了催化剂的比表面积,同时增加光通道,使TiO2纳米管吸光范围显著增大,提升硝基苯的降解速率。  相似文献   

17.
采用共沉淀还原扩散法制备AB3型储氢合金LaMg_2Ni_(2.7)Co_(2.1)Mn_(2.7)Cu_(1.5),水热法制备TiO_2光催化剂粉体,表面滴涂法制备Ti O2/LaMg_2Ni_(2.7)Co_(2.1)Mn_(2.7)Cu_(1.5)光催化剂复合电极,并用XRD对合金和光催化剂结构进行分析,在电池测试仪上对复合电极在有、无光照条件下的电化学性能进行测试。结果表明,在无光照条件下复合电极的活化性能和最大放电容量较原合金电极性能有所下降,合金充放电的循环稳定性能有所提高。光照条件下,表面滴涂20%TiO_2复合电极的电化学性能比无光照时大幅提高,且最大放电容量比未涂覆的原合金电极提高25 m Ah·g~(-1)。说明TiO_2光催化剂通过表面滴涂方式对储氢合金修饰效果较好。  相似文献   

18.
目的研究界面导电性对材料电化学性能的影响,提升Ti Nb2O7的循环稳定性。方法研究纯相Ti Nb2O7材料的电化学特性,对比不同荷电态(SOC)的极片,研究材料导电性对电化学性能的影响机制。在材料的制备过程中加入不同的碳源构建导电网络,提升其导电性。结果得到了导电性对材料的影响机理,加入不同碳源显著提升了材料的循环稳定性。结论 LixTi Nb2O7的导电性随嵌锂深度的增加而增大,导致材料的脱锂行为不能彻底进行。通过加入碳纳米管或者蔗糖热解碳,可以有效提升材料的循环性能。  相似文献   

19.
本文主要研究了泡沫钛孔隙表面生长二氧化钛纳米管的制备方法及二氧化钛纳米管的生长机理。利用与制备多孔陶瓷类似的方式,通过高温真空烧结法,制备了多孔泡沫钛镍合金。对该泡沫合金进行了表面改性,通过阳极氧化法在多孔泡沫钛镍合金的孔隙表面生成了二氧化钛纳米管结构。借助于扫描电镜的观测和分析,对该二氧化钛纳米管的生长机理进行了表征和研究,同时考察了阳极氧化电压和时间对二氧化钛纳米管结构形貌的影响。  相似文献   

20.
通过溶剂热法制备了一种高比表面积的铝基金属有机框架(metal organic frameworks,MOFs)材料Al-ABTC。然后通过静电吸附法将Al-ABTC与氧化石墨烯(GO)复合,并载硫得到Al-ABTC/RGO@S复合材料用于锂硫电池。采用 X 射线衍射(XRD)分析了Al-ABTC的晶体结构,采用扫描电镜(SEM)对Al-ABTC、Al-ABTC/GO和Al-ABTC/RGO@S的八面体形貌进行表征,用恒流充放电测试材料的电化学性能。结果表明,Al-ABTC/RGO@S复合电极在0.2 C电流密度下的首次放电容量达到1345.3 mAh g-1,经过200次的循环以后还能达到406.4 mAh g-1的比容量,其平均库伦效率为99.1%。此外电池即使在2 C下,首次放电比容量高达714.7 mAh g-1,经过300次循环以后容量保持在331 mAh g-1,表现出良好的长循环性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号