首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of the nicotinic agonists acetylcholine, (+)-anatox in-a, carbachol, cytisine, dimethylphenylpiperazinum, (+)-epibatidine, (-)-epibatidine, methylcarbachol, D-nicotine, L-nicotine, and tetramethylammonium on 86Rb+ efflux from mouse thalamic synaptosomes were investigated. All 11 agonists evoked a concentration-dependent stimulation of 86Rb+ efflux as well as a time- and concentration-dependent reduction of response (desensitization). The agonists varied widely in potency, efficacy and rate of desensitization. (+)-Epibatidine was the most potent agonist (EC50 = 10 nM), whereas tetramethylammonium was the least potent (EC50 = 65 microM). The agonists containing a quaternary ammonium group were generally more efficacious than the other agonists, except for both of the enantiomers of epibatidine, which stimulated 86Rb+ efflux at least as well as acetylcholine. Cytisine was the least efficacious compound tested with a maximal response approximately 10% that of (-)-epibatidine. Exposure of the thalamic synaptosomes to agonist concentrations that generally stimulated little or no efflux reduced in a concentration-dependent manner a subsequent response to 10 microM nicotine. The IC50 values for this functional blockade (desensitization) were highly correlated with the Ki values for the inhibition of [3H]nicotine binding. Furthermore, exposure of the thalamic synaptosomes to 300 nM L-nicotine reduced the responses evoked by a subsequent exposure to a stimulating concentration of all 11 agonists. The observation of desensitization by both stimulating and substimulating concentrations of each agonist is consistent with the predictions of the two-state model of Katz and Thesleff.  相似文献   

2.
While trying to mimic the dose and time course of nicotine as it is obtained by a smoker, we found the following results. The initial arrival of even a low concentration of nicotine increased the firing rate of dopaminergic neurons from the ventral tegmental area (VTA) and increased the spontaneous vesicular release of GABA from hippocampal neurons. Longer exposure to nicotine caused variable, but dramatic, desensitization of nicotinic receptors and diminished the effects of nicotine. The addictive properties of nicotine as well as its diverse effects on cognitive function could be mediated through differences in activation and desensitization of nicotinic receptors in various areas of the brain.  相似文献   

3.
The nature of the signaling process activated by neuronal nicotinic receptors has not been fully defined; however, several recent studies have implicated the involvement of calcium ion fluxes in the response to nicotine on a cellular level. Alteration of nicotine-induced antinociception in mice after systemic administration was therefore investigated in the presence of several drugs that increase intracellular calcium. Calcium, (+/-)-BAYK 8644, thapsigargin, glyburide and A23187 administered intrathecally (i.t.) were found to enhance nicotine-induced antinociception by shifting its dose-response curve to the left. Conversely, i.t. administration of agents which decrease intracellular calcium, such as EGTA and alpha-calcitonin gene-related peptide, blocked nicotine-induced antinociception. These findings support a role for spinal intracellular calcium in the pharmacological effects of nicotine. Additionally, blockade of antinociception by nimodipine and nifedipine indicates that a L-type calcium channel is involved in nicotine's effect. However, nicotine did not compete for [3H] nitrendipine binding. Intrathecal administration of mecamylamine, a nicotinic antagonist, resulted in a blockade of antinociception produced by the i.t. injection of thapsigargin, A23187, calcium and (+/-)-BAYK 8644. The mechanism of mecamylamine's antagonism of nicotine is uncertain. However, these results suggest that mecamylamine blocks the effects of drugs which increase intracellular calcium by either a modulation of intracellular calcium-dependent mechanisms or a blockade of calcium channels. Thus, mecamylamine could modulate a calcium signaling process secondary to receptor activation resulting in blockade of antinociception produced by diverse agents.  相似文献   

4.
We investigated if activation of the muscarinic or nicotinic acetylcholine receptors and serotonin (5-hydroxytryptamine; 5-HT) subtype 2 receptors would have additive or synergistic effects on the suppression of thalamocortically generated rhythmic neocortical high-voltage spindles (HVSs) in aged rats. The 5-HT2 receptor antagonist, ketanserin, at a moderate dose (5 mg/kg) prevented the ability of a muscarinic acetylcholine receptor agonist, (oxotremorine 0.1 mg/kg), and a nicotinic acetylcholine receptor agonist (nicotine 0.1 mg/kg), to decrease HVSs. At a higher dose (20 mg/kg), ketanserin completely blocked the decrease in HVSs produced by moderate doses of muscarinic acetylcholine receptor agonists (pilocarpine 1 mg/kg and oxotremorine 0.1 mg/kg), and by a high dose of nicotine (0.3 mg/kg), though not that produced by high doses of pilocarpine (3 mg/kg) and oxotremorine (0.9 mg/kg). The ability of a 5-HT2 receptor agonist, (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) (0.1-1.0 mg/kg), to suppress HVSs was non-significantly modulated by the nicotinic acetylcholine receptor antagonist, mecamylamine (1-15 mg/kg), and the muscarinic acetylcholine receptor antagonist, scopolamine (0.03-0.3 mg/kg). The effects of the drugs on behavioral activity could be separated from their effects on HVSs. The results suggest that activation of the muscarinic or nicotinic acetylcholine receptors plus 5-HT2 receptors has additive effects in the suppression of thalamocortical oscillations in aged rats.  相似文献   

5.
There is little doubt that many habitual smokers find it difficult to quit the habit because they have become addicted to the nicotine present in the smoke. This paper addresses some of the pharmacological mechanisms underlying this addiction and discusses how an understanding of these mechanisms may contribute to the more effective use of nicotine replacement therapy during smoking cessation. It considers critically the evidence that the "rewarding" properties of nicotine, which serve to reinforce drug-seeking behaviour, are related to stimulation of the mesolimbic dopamine system of the brain. The critique focuses specifically on the evidence that many central nicotinic receptors, including those which mediate the effects of the drug on dopamine secretion, are readily desensitized by chronic exposure to agonist and that hypotheses which assume that nicotine inhaled from tobacco smoke invariably results in stimulation of the receptors must be treated with caution. Nicotinic receptors in the brain are, however, heterogeneous in nature with different molecular structures and pharmacologies. It is concluded that the reinforcing properties of nicotine sought by smokers may reflect both stimulation and desensitization of the different nicotinic receptor populations, and that smokers may adjust their smoking habits to achieve the balance of receptor stimulation and desensitization which they find most reinforcing. It seems likely that the efficacy of the different nicotine formulations during the treatment of smoking cessation may also reflect their ability to stimulate or desensitize brain nicotinic receptors.  相似文献   

6.
Tobacco use in developed countries is estimated to be the single largest cause of premature death. Nicotine is the primary component of tobacco that drives use, and like other addictive drugs, nicotine reinforces self-administration and place preference in animal studies. Midbrain dopamine neurons normally help to shape behaviour by reinforcing biologically rewarding events, but addictive drugs such as cocaine can inappropriately exert a reinforcing influence by acting upon the mesolimbic dopamine system. Here we show that the same concentration of nicotine achieved by smokers activates and desensitizes multiple nicotinic receptors thereby regulating the activity of mesolimbic dopamine neurons. Initial application of nicotine can increase the activity of the dopamine neurons, which could mediate the rewarding aspects of tobacco use. Prolonged exposure to even these low concentrations of nicotine, however, can cause desensitization of the nicotinic receptors, which helps to explain acute tolerance to nicotine's effects. The effects suggest a cellular basis for reports that the first cigarette of the day is the most pleasurable, whereas the effect of subsequent cigarettes may depend on the interplay between activation and desensitization of multiple nicotinic receptors.  相似文献   

7.
We stably transfected human kidney embryonic 293 cells with the rat neuronal nicotinic acetylcholine receptor (nAChR) alpha3 and beta4 subunit genes. This new cell line, KXalpha3 beta4R2, expresses a high level of the alpha3/beta4 receptor subtype, which binds (+/-)- [3H]epibatidine with a Kd value of 304+/-16 pM and a Bmax value of 8942 +/- 115 fmol/mg protein. Comparison of nicotinic drugs in competing for alpha3/beta4 receptor binding sites in this cell line and the binding sites in rat forebrain (predominantly alpha4/beta2 receptors) revealed marked differences in their Ki values, but similar rank orders of potency for agonists were observed, with the exception of anatoxin-A. The affinity of the competitive antagonist dihydro-beta-erythroidine is >7000 times higher at alpha4/beta2 receptors in rat forebrain than at the alpha3/beta4 receptors in these cells. The alpha3/beta4 nAChRs expressed in this cell line are functional, and in response to nicotinic agonists, 86Rb+ efflux was increased to levels 8-10 times the basal levels. Acetylcholine, (-)-nicotine, cytisine, carbachol, and (+/-)-epibatidine all stimulated 86Rb+ efflux, which was blocked by mecamylamine. The EC50 values for acetylcholine and (-)-nicotine to stimulate 86Rb+ effluxes were 114 +/- 24 and 28 +/- 4 microM, respectively. The rank order of potency of nicotinic antagonists in blocking the function of this alpha3/beta4 receptor was mecamylamine > d-tubocurarine > dihydro-beta-erythroidine > hexamethonium. Mecamylamine, d-tubocurarine, and hexamethonium blocked the function by a noncompetitive mechanism, whereas dihydro-beta-erythroidine blocked the function competitively. The KXalpha3 beta4R2 cell line should prove to be a very useful model for studying this subtype of nAChRs.  相似文献   

8.
Nicotinic cholinergic receptors undergo desensitization upon repeated or prolonged exposure to agonist. We investigated the effects of a novel chromogranin A catecholamine release-inhibitory fragment, catestatin (chromogranin A344-364), on agonist-induced desensitization of catecholamine release from pheochromocytoma cells. In a dose-dependent fashion, the nicotinic antagonist catestatin blocked agonist desensitization of both catecholamine release (IC50 approximately 0.24 microM) and 22Na+ uptake (IC50 approximately 0.31 microM), the initial step in nicotinic cationic signal transduction; both secretion inhibition and blockade of desensitization were noncompetitive with agonist. Desensitizing effects of the nicotinic agonists nicotine and epibatidine were blocked. This antagonist action was specific to desensitization by nicotinic agonists, since catestatin did not block desensitization of catecholamine release induced by agents which bypass the nicotinic receptor. Hill plots with slopes near unity suggested noncooperativity for catestatin effects on both nicotinic responses (secretory antagonism and blockade of desensitization). Human, bovine, and rat catestatins (as well as substance P) had similar potencies. IC50 values for secretion inhibition and blockade of desensitization paralleled each other (r = 0.76, n = 10 antagonists, p = 0.01) for several noncompetitive nicotinic antagonists. Peptide nicotinic antagonists (catestatins, substance P) were far more potent inhibitors of both secretion (p = 0.019) and desensitization (p = 0.005) than nonpeptide antagonists (trimethaphan, hexamethonium, procaine, phencyclidine, cocaine, or clonidine), and the peptides displayed enhanced selectivity to block desensitization versus secretion (p = 0.003). We conclude that catestatin is a highly potent, dose-dependent, noncompetitive, noncooperative, specific inhibitor of nicotinic desensitization, an effect which may have implications for control of catecholamine release.  相似文献   

9.
The effects of the nicotinic agonist (+)-anatoxin-a have been examined in four different preparations, representing at least two classes of neuronal nicotinic receptors. (+)-Anatoxin-a was most potent (EC50 = 48 nM) in stimulating 86Rb+ influx into M10 cells, which express the nicotinic receptor subtype comprising alpha 4 and beta 2 subunits. A presynaptic nicotinic receptor mediating acetylcholine release from hippocampal synaptosomes was similarly sensitive to (+)-anatoxin-a (EC50 = 140 nM). alpha-Bungarotoxin-sensitive neuronal nicotinic receptors, studied using patch-clamp recording techniques, required slightly higher concentrations of this alkaloid for activation: Nicotinic currents in hippocampal neurons were activated by (+)-anatoxin-a with an EC50 of 3.9 microM, whereas alpha 7 homooligomers reconstituted in Xenopus oocytes yielded an EC50 value of 0.58 microM for (+)-anatoxin-a. In these diverse preparations, (+)-anatoxin-a was between three and 50 times more potent than (-)-nicotine and approximately 20 times more potent than acetylcholine, making it the most efficacious nicotinic agonist thus far described.  相似文献   

10.
The aim of this work was to assess whether nicotine prevents glutamate neurotoxicity in primary cultures of cerebellar neurons, to try to identify the receptor mediating the protective effect and to shed light on the step of the neurotoxic process which is prevented by nicotine. It is shown that nicotine prevents glutamate and NMDA neurotoxicity in primary cultures of cerebellar neurons. The protective effect of nicotine is not prevented by atropine, mecamylamine or dihydro-beta-erythroidine, but is slightly prevented by hexamethonium and completely prevented by tubocurarine and alpha-bungarotoxin, indicating that the protective effect is mediated by activation of alpha7 neuronal nicotinic receptors. Moreover, alpha-bungarotoxin potentiates glutamate neurotoxicity, suggesting a tonic prevention of glutamate neurotoxicity by basal activation of nicotinic receptors. Nicotine did not prevent glutamate-induced rise of free intracellular calcium nor depletion of ATP. Nicotine prevents glutamate-induced proteolysis of the microtubule-associated protein MAP-2 and disaggregation of the neuronal microtubular network. The possible mechanism responsible for this prevention is discussed.  相似文献   

11.
Human epidermal keratinocytes synthesize, secrete, and degrade acetylcholine and use their cell-surface nicotinic and muscarinic cholinergic receptors to mediate the autocrine and paracrine effects of acetyl-choline. Because acetylcholine modulates transmembrane Ca2+ transport and intracellular metabolism in several types of cells, we hypothesized that cholinergic agents might have similar effects on keratinocytes. Nicotine increased in a concentration-dependent manner the amount of 45Ca2+ taken up by keratinocytes isolated from human neonatal fore-skins. This effect was abolished in the presence of the specific nicotinic antagonist mecamylamine, indicating that it was mediated by keratinocyte nicotinic acetylcholine receptor(s). The sequences encoding the alpha 5 and alpha 7 nicotinic receptor subunits were amplified from cDNA isolated from cultured keratinocytes. These subunits, as well as the alpha 3, beta 2, and beta 4 subunits previously found in keratinocytes, can be components of Ca(2+)-permeable nicotinic receptor channels. To learn how activation of keratinocyte nicotinic receptors affected the rate of cell differentiation, we measured the nicotinic cholinergic effects on the expression of differentiation markers by cultured keratinocytes. Long-term incubations with micromolar concentrations of nicotine markedly increased the number of cells forming cornified envelopes and the number of cells staining with antibodies to suprabasal keratin 10, transglutaminase type I, involucrin, and filaggrin. The increased production of these differentiation-associated proteins was verified by Western blotting. Because nicotinic cholinergic stimulation causes transmembrane Ca2+ transport into keratinocytes, and because changes in concentrations of intracellular Ca2+ are known to alter various keratinocyte functions, including differentiation, the subcellular mechanisms mediating the autocrine and paracrine actions of epidermal acetylcholine on keratinocytes may involve Ca2+ as a second messenger.  相似文献   

12.
We assessed the pharmacological activity of anabaseine, a toxin found in certain animal venoms, relative to nicotine and anabasine on a variety of vertebrate nicotinic receptors, using cultured cells, the Xenopus oocyte expression system, contractility assays with skeletal and smooth muscle strips containing nicotinic receptors and in vivo rat prostration assay involving direct injection into the lateral ventricle of the brain. Anabaseine stimulated every subtype of nicotinic receptor that was tested. It was the most potent frog skeletal muscle nicotinic receptor agonist. At higher concentrations it also blocked the BC3H1 (adult mouse) muscle type receptor ion channel. The affinities of the three nicotinoid compounds for rat brain membrane alpha-bungarotoxin binding sites and their potencies for stimulating Xenopus oocyte homomeric alpha7 receptors, expressed in terms of their active monocation concentrations, displayed the same rank order, anabaseine>anabasine> nicotine. Although the maximum currents generated by anabaseine and anabasine at alpha7 receptors were equivalent to that of acetylcholine, the maximum response to nicotine was only about 65% of the acetylcholine response. At alpha4-beta2 receptors the affinities and apparent efficacies of anabaseine and anabasine were much less than that of nicotine. Anabaseine, nicotine and anabasine were nearly equipotent on sympathetic (PC12) receptors, although parasympathetic (myenteric plexus) receptors were much more sensitive to anabaseine and nicotine but less sensitive to anabasine. These differences suggest that there may be different subunit combinations in these two autonomic nicotinic receptors. The preferential interactions of anabaseine, anabasine and nicotine with different receptor subtypes provides molecular clues that should be helpful in the design of selective nicotinic agonists.  相似文献   

13.
Acute administration of morphine alters various neuroendocrine and immune parameters via opioid receptors located within the central nervous system. Similar effects have been reported after systemic nicotine treatment. To examine the possible relationship between opioid and nicotinic receptor activation on the immune system, we compared the effects of morphine with both nicotine and the highly selective nicotinic agonist, epibatidine. Male Sprague-Dawley rats were treated with either morphine (10 mg/kg, s.c.), nicotine (2.85 mg/kg, s.c. = 1 mg/kg freebase), or epibatidine (5 microg/kg, s.c.) and sacrificed 2 hours later. Each drug increased plasma corticosterone levels and decreased the magnitude of the peripheral blood lymphocyte proliferation response to the T cell mitogen concanavalin A. None of the treatments had a significant effect on splenic or thymic lymphocyte responses. The effects of nicotine treatment were dose-dependent. Pretreatment with the quaternary ganglionic antagonist chlorisondamine (0.5 mg/kg, i.p.), completely blocked the effect of epibatidine on blood lymphocytes without altering the elevation of corticosterone levels. Although naltrexone (10 mg/kg, s.c.) blocked all effects of morphine, the effects of epibatidine were not blocked by the opioid receptor antagonist. Furthermore, in contrast to morphine (), central injection of neither nicotine (30 or 240 nmol) nor epibatidine (5, 50, or 500 ng) altered blood lymphocyte responses. These results suggest that, like morphine, nicotinic agonists decrease blood lymphocyte proliferation responses, apparently independent of elevated corticosterone. However, unlike morphine, nicotinic agonists appear to act predominantly at peripheral receptors, suggesting that nicotinic receptors are downstream of opioid receptors in a centrally mediated opioid-induced immunomodulatory pathway.  相似文献   

14.
Excessive activation of glutamate receptors is thought to play a critical role in neuronal excitotoxicity. To compare the cytotoxic potential of different glutamate receptor subtypes and correlate receptor biophysical properties with cytotoxicity, we have expressed recombinant receptors in human embryonic kidney 293 (HEK-293) cells. Survival of transfected cells was analyzed under conditions of defined agonist concentration and exposure time. For HEK-293 cells transfected with N-methyl-D-aspartate (NMDA) receptors, the EC50 for NMDA-induced cytotoxicity was 300 microM. Experiments using ion substitution, or cells expressing mutant NMDA receptors with low calcium permeability, suggested that both calcium and sodium influx through NMDA receptors contributed to cytotoxicity. In contrast, cytotoxicity was not observed in cells transfected with calcium permeable alpha-amino 3-hydroxy-5-methyl-4-isoxazole propionate- or kainate-type glutamate receptors even at saturating agonist concentrations, unless inhibitors of agonist-dependent desensitization were included. These results directly demonstrate that calcium permeability and desensitization kinetics play important roles in determining the excitotoxic potential of different glutamate receptor subtypes.  相似文献   

15.
The amplitude of the hippocampal evoked response to the second of two identical auditory stimuli is suppressed relative to the response to the first stimulus. This inhibitory gating of sensory response has been linked to alpha-bungarotoxin-sensitive nicotinic receptors, which are found primarily on gamma-amino butyric acid neurons in rat hippocampus. A recent study showed a high level of colocalization of alpha-bungarotoxin binding with immunoreactivity for nitric oxide synthase, the catalytic enzyme which produces nitric oxide, in rat hippocampus. To determine if loss of enzyme activity would alter normal sensory inhibition, Nomega-nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthase inhibitor, was continuously perfused through the ventricular system of anesthetized rats as they were tested for response to paired auditory stimuli. L-NAME, but not Nomega-nitro-D-arginine methyl ester (D-NAME), the inactive enantiomer, produced a loss of sensory inhibition. To determine if the effect of nitric oxide was presynaptic or postsynaptic to nicotinic receptors, rats with lesions of the fimbria/fornix, which removes the medial septal projection to the hippocampus, were tested with nicotine in the presence of L- or D-NAME. Fimbria/fornix lesions normally reduce sensory inhibition, which is restored with systemic nicotine injections. Lesioned rats treated with D-NAME showed normal sensory inhibition upon injection of nicotine; lesioned rats treated with L-NAME did not. These data support the hypothesis that stimulation of a nicotinic receptor releases nitric oxide, which in turn mediates sensory inhibition. The nicotine-induced release of nitric oxide may explain why some of the behavioral effects of nicotine have a longer time course than predicted from desensitization of nicotinic receptors.  相似文献   

16.
Many neurotransmitter receptors that interact with pertussis toxin-sensitive G proteins, including the alpha 2-adrenergic receptor, can modulate both voltage-dependent calcium channels and G protein-coupled inwardly-rectifying K+ channels. Serotonergic neurons of the medulla oblongata (nucleus raphe obscurus and nucleus raphe pallidus), which provide a major projection to sympathetic and motor output systems, receive a catecholaminergic input and express alpha 2-adrenergic receptors. Therefore, we tested the effects of norepinephrine on voltage-dependent calcium channels and G protein-coupled inwardly-rectifying K+ channels in neonatal raphe neurons using whole-cell recording in a brainstem slice preparation. Calcium channel currents were inhibited by norepinephrine in the majority of raphe neurons tested (88%) and in all identified tryptophan hydroxylase-immunoreactive (i.e. serotonergic) neurons. When tested in the same neurons, the magnitude of calcium current inhibition by norepinephrine (approximately 25%) was less than that induced by 5-hydroxytryptamine (approximately 50%). The norepinephrine-induced calcium current inhibition was mediated by alpha 2-adrenergic receptors; it was mimicked by UK 14304, an alpha 2-adrenergic receptor agonist and blocked by idazoxan, an alpha 2-adrenergic receptor antagonist, but not affected by prazosin or propanolol (alpha 1 and beta adrenergic antagonists, respectively). Calcium current inhibition by norepinephrine was essentially eliminated following application of omega-Conotoxin GVIA and omega-Agatoxin IVA, indicating that norepinephrine modulated N- and P/Q-type calcium channels predominantly. Calcium current inhibition by norepinephrine was voltage-dependent and mediated by pertussis toxin-sensitive G proteins. Thus, as expected, alpha 2-adrenergic receptor activation inhibited N- and P/Q-type calcium currents in medullary raphe neurons via pertussis toxin-sensitive G proteins. In parallel experiments, however, we found that norepinephrine had no effect on G protein-coupled inwardly-rectifying K+ channels in any raphe neurons tested, despite the robust activation of those channels in the same neurons by 5-hydroxytryptamine. Together, these data indicate that alpha 2-adrenergic receptors can modulate N- and P/Q-type calcium channels in caudal medullary raphe neurons but do not couple to the G protein-coupled inwardly-rectifying K+ channels which are also present in those cells. This is in contrast to the effect of 5-hydroxytryptamine1A receptor activation in caudal raphe neurons, and indicates a degree of specificity in the signalling by different pertussis toxin-sensitive G protein-coupled receptors to voltage-dependent calcium channels and G protein-coupled inwardly-rectifying K+ channels even within the same cell system.  相似文献   

17.
L-Nicotine stimulates a biphasic release of [3H]dopamine from mouse striatal synaptosomes which does not persist after agonist is removed. Approximately 80% of the initial release is transient and disappears with a half-time of less than 1 min; the other 20% persists for several minutes (t(1/2), 5-10 min). Both the transient and persistent phases were investigated by 10-min exposures to agonists with an in vitro perfusion technique. A series of nicotinic agonists and antagonists were used to determine the pharmacological relationship of the two phases. Parameters measured included EC50 and Vmax values and desensitization rates for both phases for agonists, Ki values for antagonists and Ki values for low concentrations of agonists. The results are consistent with both phases being mediated by a single type of receptor. In addition, the effects of chronic nicotine treatment on transient and persistent [3H]DA release were measured. For both phases, release was decreased approximately 15% by chronic infusion of 4.0 mg/kg/hr L-nicotine. Correlation of the results with inactivation of a portion of the receptors rather than a reversible desensitization is discussed.  相似文献   

18.
1. Site-directed mutagenesis was used to create an altered form of the chicken alpha7 nicotinic acetylcholine (ACh) receptor subunit (alpha7x61) in which a leucine residue was inserted between residues Leu9' and Ser10' in transmembrane domain 2. The properties of alpha7x61 receptors are distinct from those of the wild-type receptor. 2. Oocytes expressing wild-type alpha7 receptors responded to 10 microM nicotine with rapid inward currents that desensitized with a time-constant of 710+/-409 ms (mean+/-s.e.mean, n=5). However in alpha7x61 receptors 10 microM nicotine resulted in slower onset inward currents that desensitized with a time-constant of 5684+/-3403 ms (mean+/-s.e.mean, n = 4). No significant difference in the apparent affinity of nicotine or acetylcholine between mutant and wild-type receptors was observed. Dihydro-beta-erythroidine (DHbetaE) acted as an antagonist on both receptors. 3. Molecular modelling of the alpha7x61 receptor channel pore formed by a bundle of M2 alpha-helices suggested that three of the channel lining residues would be altered by the leucine insertion i.e.; Ser10 would be replaced by the leucine insertion, Val13' and Phe14' would be replaced, by Thr and Val, respectively. 4 When present in the LEV-1 nicotinic ACh receptor subunit from Caenorhabditis elegans the same alteration conferred resistance to levamisole anthelmintic drug. Levamisole blocked responses to nicotine of wild-type and alpha7x61 receptors. However, block was more dependent on membrane potential for the alpha7x61 receptors. 5. We conclude that the leucine insertion in transmembrane domain 2 has the unusual effect of slowing desensitization without altering apparent agonist affinity.  相似文献   

19.
Tolerance is an important determinant of addiction as well as therapeutic and/or toxic effects of drugs. The development of acute tolerance to various effects of nicotine was studied in nine healthy smokers who were abstaining from tobacco. Nicotine was infused rapidly to reach a concentration of about 25 ng/ml, followed by a computer-controlled infusion to maintain that concentration. A novel semiparametric model of nicotine effects and tolerance was developed. Tolerance to various effects of nicotine (increases in heart rate, blood pressure, plasma epinephrine and energy expenditure) occurred within the range of nicotine levels found in smokers. However, the rate of tolerance development varied considerably. The half-lives of tolerance ranged from 3.5 min for the increase in energy expenditure to 70 min for systolic blood pressure. There was no apparent tolerance to the effects on free fatty acid concentrations, which reflects lipolysis. Differences in the pharmacodynamics of tolerance may reflect differences in rate of desensitization of various subtypes of nicotinic receptors and/or differences in mechanisms of tolerance for various nicotinic effects.  相似文献   

20.
In the first part of this paper, the effects of single administration of nicotine on gastric motility of urethane-anesthetized rats are briefly summarized from our recently reported papers. Then, the effects of repeated administration of nicotine on the nicotine-induced changes in gastric motility and release of hypothalamic noradrenaline, in vitro, are described, with special references to up-regulation of nicotinic receptors. Nicotine 0.1 nmol administered into the dorsal motor nucleus of the vagus (DMV) elicited a dual change, a decrease followed by an increase in gastric motility. Intravenous administration of nicotine 300 nmol/kg decreased gastric motility. This decrease in gastric motility was inhibited by microinjection of hexamethonium into the DMV and was terminated by bilateral vagotomy. In animals pretreated with nicotine 200 nmol intracerebroventricularly (icv) administered once a day for 5 days, nicotine 100 nmol administered icv induced the decrease but not the increase in gastric motility. In conclusion, nicotine activates nicotinic receptors in the DMV and a resultant vagally-mediated dual change in gastric motility occurs. Furthermore, gastric inhibitory mechanisms in the DMV are susceptible to nicotine more than the excitatory mechanisms, and desensitization to nicotine occurs easily in the excitatory mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号