首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Discriminator detection of Gaussian minimum shift keying (GMSK) in a cellular mobile-communication channel is analyzed. The channel is modeled as a frequency-selective fast Rayleigh fading channel corrupted by additive white Gaussian noise (AWGN) and co-channel interference (CCI). A closed-form expression for the probability of error is derived. Numerical computation is used to obtain the GMSK bit error rate (BER) performance for various combinations of channel parameters. These results show that GMSK gives slightly better performance compared to that for π/4-quadrature phase shift keying (QPSK) previously reported in the literature  相似文献   

2.
Data transmission using M-ary differential phase shift keying (MDPSK) over the nonselective Rayleigh fading channel with diversity reception is considered. While previous studies on error probability mostly assume no fading fluctuation, the author considers, exclusively, the case in which the fading process fluctuates from one symbol interval to the next. Exact bit error probability results for 2, 4, and 8 DPSK as well as tight upper bounds are derived. Some applications of the results are discussed  相似文献   

3.
M-ary phase-shift keying and differential phase-shift keying (DPSK) on a slow fading Rayleigh channel without diversity is investigated. Expressions for the distribution of the phase angle between a vector with Rayleigh amplitude distribution and a noiseless reference, and between two vectors both with Rayleigh amplitude distribution perturbed by Gaussian noise are obtained  相似文献   

4.
An expression is derived for the error probability of M-ary offset differential phase-shift keying (DPSK) with the differential phase detector and narrowband receiver filter in the satellite mobile (Rician) channel, which includes as special cases the Gaussian and land mobile (Rayleigh) channels. The error probability is computed as a function of various system parameters for M=2, 4, and 8 symbols and third-order Butterworth receiver filter. Both symmetric and conventional DPSK systems are considered. The optimal normalized bandwidth is close to 1.0. Symmetric and conventional DPSK differ significantly in error probability only for M=2 and in the lower range filter bandwidth. In most cases, symmetric DPSK outperforms conventional DPSK. This was particularly noted when the time delay between the specular and diffused signal components was taken into account  相似文献   

5.
We propose a postdetection phase combining (PC) scheme for the two branch diversity reception of differential phase shift keying (DPSK) over multipath fading channels. The receiver has a differential phase detector (DPD) in each diversity branch, and the combiner weights each detector output in proportion to the vth power of the signal envelope at the detector's input. For π/4-shift QDPSK over frequency-flat Rayleigh fading channels, we find via computer simulation that the optimum weight factor is v=2, and that our simple, practical combining scheme performs almost as well as postdetection maximal ratio combining (MRC). We demonstrate similar relative performances for frequency-selective fading channels and for channels with co-channel interference (CCI)  相似文献   

6.
The generalized cutoff rate of time- and frequency-selective fading channels is evaluated for M-ary frequency-shift keying (MFSK) and M-ary differential phase-shift keying (MDPSK) modulation with soft decoding. The optimal signaling rate and code rate for dispersive channels are evaluated. The guard time effect, is used in multipath spread channels, is evaluated for frequency-selective channels, and the optimal combination of signaling rate, code rate, and guard time is presented. Special attention is given to CCIR (International Radio Consultative Committee) HF channel models  相似文献   

7.
The performance of trellis-coded M-ary phase shift keying (MPSK) is analyzed for three types of phase detection system; differential detection, pilot-symbol-aided detection and pilot-tone-aided detection. A near-exact solution to the probability of event error in Rayleigh fading is derived, and two extremely tight upper bounds generated. They improve the Chernoff upper bound by at least a factor of four at medium and high signal-to-noise ratios (SNR)  相似文献   

8.
It is shown how to derive formulas for the error probability for M-ary differential phase shift keying with differential phase detection (DPD) and M-ary frequency shift keying with DPD, limiter-discriminator detection and limiter-discriminator-integrator detection in the satellite mobile channel (SMC) with narrowband receiver filter if such formulas are available for the Gaussian channel. The modification of the formulas involves only a redefinition of the noise power and autocorrelation function. Since the SMC contains as special cases the land mobile (Rayleigh) channel and the Gaussian channel, the derived formulas are valid for these channels as well. In fact the formula for the land mobile channel is in many cases reduced to a closed form, which does not contain an integral. The author computes the error probability for the four systems, and compares their performance assuming a third-order butterworth filter and M=2,4,8 symbols  相似文献   

9.
Postdetection diversity reception weights and combines all the detector outputs before symbol decision to combat the effects of multipath fading. A theoretical analysis of a postdetection optimal diversity combiner that can minimize the symbol error probability for differential phase shift keying (DPSK) differential detection in the presence of multiplicative Rayleigh fading, and co-channel interference (CCI) is presented. The effect of unequal average powers among diversity branches is taken into account. It is shown that the postdetection maximal-ratio combiner (MRC) described previously by the author is not optimal unless all branches have the same average power. It is also found that the combiner optimized for the effect of CCI (fading induced random FM noise) should weight each branch detector output in inverse proportion to the average CCI power (desired signal power). Assuming two-branch diversity, calculated BER (bit-error-rate) performance of π/4-shift QDPSK due to AWGN, CCI, and random FM is presented. In addition, the BER due to multipath channel delay spread (which is not treated in the theoretical analysis) is also computed to find the optimal combiner  相似文献   

10.
The author presents uncoded and coded performance results for noncoherent M-ary frequency-shift keying (MFSK) and differentially coherent binary phase-shift keying (DPSK) in a slow nonselective Nakagami-m (1960) fading channel. He gives simple expressions for the asymptotic slopes of probability of bit error for large signal-to-noise ratio and shows that the effective order of diversity compared to an uncoded Rayleigh channel is the product of two parameters, one for the channel and one for the code. He also compares the uncoded Nakagami-m results to those of the Rician channel in order to show performance differences between these two generalized fading channel models  相似文献   

11.
An expression is derived for the error probability of M-ary frequency shift keying with a limiter-discriminator-integrator detector and a narrowband receiver filter in the satellite mobile channel. This channel contains, as special cases, the Gaussian and Rayleigh (land mobile) channels. The error probability is computed as a function of various system parameters for M=2, 4, 8 symbols and a third-order Butterworth receiver filter  相似文献   

12.
Mobile radio systems require highly bandwidth efficient digital modulation schemes because of the limited resources of the available radio spectrum. A theoretical analysis of bit error rate (BER) is presented for the differential detection of differentially encoded 16-level amplitude/phase shift keying (16DAPSK) under Rician fading in the presence of Rayleigh faded co-channel interference (CCI) and additive white Gaussian noise (AWGN). Differential detection comprises eight-level differential phase detection (DPD) and two-level amplitude ratio detection (ARD). Exact expressions for probability distributions of differential phase noise and amplitude ratio are derived for the BER calculation. The calculated BER performance of 16DAPSK is presented for various values of Rician fading K factor, Doppler spread of diffused component, and Doppler shift of the specular component, and is compared with that of 4-16DPSK. It is shown that 16DAPSK is superior to 16DPSK and requires 1.7 (1.6) dB less Eb/N0 (SIR) at BER=10-3 in Rician channels with K=5 dB  相似文献   

13.
A formula is derived for the error probability of M-ary differential phase-shift keying with differential phase detection in a two-path Rayleigh fading channel taking into account adjacent channel interference (ACI), cochannel interference (CCI), intersymbol interference (ISI), and Doppler frequency shift. Square-root Nyquist filters are used with roll-off, β, the transmitter and receiver as in the proposed US digital mobile radio system. The presence of the second path has a profound effect on increasing the bit error probability (BEP) because it causes ISI. In the absence of ISI, ACI has a smaller effect on BEP than CCI. In the presence of ISI their effect is essentially the same. For a given bit energy-to-noise ratio, the binary system has the lowest BEP; however, the bit rate is also the lowest for a given bandwidth. When the main interference is ACI or CCI, a quaternary system has a lower BEP than the octal system. When the main interference is ISI, this is reversed  相似文献   

14.
An analysis of adjacent and nonadjacent double differential M -ary PSK (M-ary D2PSK) on the fast Rician fading channel is presented. The probability density function (PDF) of the first-order phase error (FOPE) and the probability density functions of the second-order phase error (SOPE) for both adjacent and nonadjacent D2PSK on a fading channel have been derived. Asymptotic approximations for these PDFs are proposed in the case of channels with weak fading (including the additive white Gaussian noise (AWGN) channel) and high signal-to-noise ratio. For nonadjacent D2PSK with independent FOPEs a simplified PDF of SOPE has been obtained. The derived PDFs allow calculation of error performance of D2PSK, as well as of DPSK, on the Rician channel including the AWGN channel and the Rayleigh channel and verification of some results reported in the literature earlier. It is shown that nonadjacent D2PSK can be optimized by choosing a proper separation between the first-order phase differences  相似文献   

15.
A model for the semi-analytic performance evaluation of digital satellite radio links in the presence of interference on both the uplink and the downlink is presented. Error probability on the linear portion of the link is estimated using simulation to determine the moments of the interfering signal samples and analyzing the effect of an undetermined phase difference among carriers. The nonlinear portion of the link is modeled using a series expansion of the nonlinearity; the output terms are then separated, allowing construction of the conditional probability densities required in the error probability computation. Results are carried out for M-QAM (M-ary quadrature amplitude modulation) and M-PSK (M-ary phase-shift keying) modulation systems  相似文献   

16.
The application of the nonredundant error correction (NEC) technique to the North American and Japanese digital cellular modulation standard, π/4-shift differential quadrature phase shift keying (DQPSK), in a combined additive white Gaussian noise (AWGN) and cochannel interference (CCI) environment is proposed, analyzed, and theoretically evaluated. The performance for NEC receivers with single, double, and triple error correction capability is theoretically analyzed and evaluated. For the CCI, the general model, which includes M statistical independent interferers also employing the π/4-shift DQPSK modulation format, is adopted. The theoretical symbol error probability versus carrier-to-noise ratio have been obtained with M and the carrier-to-interference ratio (C/I) as parameters. The results indicate significant performance improvements over conventional differentially detected systems. Some of the results have been verified by computer simulation. The gains offered by the NEC receivers increase as C/I decreases and/or M increases. Significant error floor reductions have been observed  相似文献   

17.
A low-complexity pseudo-analog speech transmission scheme is proposed for portable communications. It uses a speech coder based on adaptive differential pulse code modulation (ADPCM) in combination with a multilevel digital modulation technique such as M-ary DPSK or M-ary FSK and features low quantization noise, bandwidth efficiency, and robustness to transmission errors. A nonsymmetric M -ary DPSK scheme called skewed M-ary DPSK is proposed to enhance the noisy channel performance. Comparison to conventional analog FM and a digital speech transmission scheme using adaptive predictive coding and forward error correction (FEC) based on convolutional coding shows that the pseudo-analog system has the best objective signal-to-noise ratio performance under most channel conditions. Informal subjective evaluations rate the digital system superior to the pseudo-analog scheme for bad channels and conversely for good channels. It is concluded that the pseudo-analog system can be designed with low delay and high speech quality for good channels with high spectral efficiency  相似文献   

18.
The performance of M-ary differential phase shift keying (MDPSK) on frequency-selective slow Rayleigh fading, lognormal shadowed channels with diversity combining is analyzed for mobile and portable applications. The use of L-branch equal gain postdetection microdiversity combining to mitigate the effects of fading and P-port macrodiversity to alleviate the effects of shadowing are investigated. Four performance criteria are considered for a frequency-selective multipath fading, intersymbol interference channel. These are, the short term bit error rate (BER), the irreducible BER, the complementary distribution over the lognormal shadowing of the average BER, and the probability that the instantaneous BER exceeds a threshold value, averaged over a spatial environment. Closed-form expressions for the four performance criteria are obtained. The BER and outage performance results show that diversity combining is an effective method for improving the system performance (and hence system reliability), when the normalized delay spread is not large. It is also seen that, in most cases, 4DPSK gives the best performance followed by 8DPSK and 2DPSK, respectively, for a given information throughput  相似文献   

19.
In this paper, we discuss the transmission performance of Multi-Carrier Modulation (MCM) in frequencyselective fast Rayleigh fading channels. First, we optimize the transmission parameters of MCM withM-ary differential phase shift keying/differential detection (DPSK):the guard duration andthe number of sub-carriers for frequency-selective fast Rayleigh fading channels, and then show the bit error rate (BER) performance of the optimizedM-ary DPSK MCM. Next, we propose an MCM with pilot-assistedM-ary quadrature amplitude modulation/coherent detection (QAM), and discuss the BER performance when we reduce the number of pilot signals from the view-point of frequency-time utilization efficiency. Finally, we propose a two-stage frequency offset compensation method.  相似文献   

20.
By considering the global fading process on the link caused by rain attenuation and amplitude scintillations, particularly at Ka band, it is possible to derive a long-term statistical model of the satellite channel capacity. The four-parameter distribution, which combines amplitude scintillations and rain fade within an up/down link system, is presented. Also presented are the degradation (and improvement) of bit error rate (BER) in the presence of amplitude scintillations, thus complementing the flat fade effect due to rain only. By implementation of adaptive communication systems, a more efficient channel capacity utilization is possible. The concepts and the use of novel analytical expressions combining a log-normal model of rain fade with a Moulsley-Vilar distribution for scintillations are illustrated. These are then applied to a very-small-aperture terminal (VSAT) example of a 29/19-GHz digital communications link through the Olympus satellite using M-ary phase shift keying (PSK) modulation schemes  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号