首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Capillary hydrodynamics has three considerable distinctions from macrosystems: first, there is an increase in the ratio of the surface area of the phases to the volume that they occupy; second, a flow is characterized by small Reynolds numbers at which viscous forces predominate over inertial forces; and third, the microroughness and wettability of the wall of the channel exert a considerable influence on the flow pattern. In view of these differences, the correlations used for tubes with a larger diameter cannot be used to calculate the boundaries of the transitions between different flow regimes in microchannels. In the present review, an analysis of published data on a gas-liquid two-phase flow in capillaries of various shapes is given, which makes it possible to systematize the collected body of information. The specific features of the geometry of a mixer and an inlet section, the hydraulic diameter of a capillary, and the surface tension of a liquid exert the strongest influence on the position of the boundaries of two-phase flow regimes. Under conditions of the constant geometry of the mixer, the best agreement in the position of the boundaries of the transitions between different hydrodynamic regimes in capillaries is observed during the construction of maps of the regimes with the use of the Weber numbers for a gas and a liquid as coordinate axes.  相似文献   

2.
Flow patterns in microstructured reactors (or microchannels) play an important role in dictating the mass transfer rates. In the present work, experiments were carried out to investigate the two phase (liquids) flow patterns in microchannels with different cross sections and contacting geometries. The pattern formation was analysed and conditions were classified in the three regions: surface tension dominated (slug flow), transition (slug-drop and deformed interface flow) and inertia dominated region (annular or parallel flow). A criterion for liquid-liquid flow pattern transition was developed using Capillary and Reynolds numbers based on the work of Dessimoz et al. [1] for gas-liquid systems. Finally, it was applied to the literature data and good agreement was obtained. The criterion is suitable for capillaries with hydraulic diameter up to 3 mm independently of cross section form and is an important predictive tool for the rational design of micro reactors for liquid-liquid reactions.  相似文献   

3.
微通道内气-液弹状流动及传质特性研究进展   总被引:3,自引:2,他引:1       下载免费PDF全文
尧超群  乐军  赵玉潮  陈光文  袁权 《化工学报》2015,66(8):2759-2766
气-液弹状流,又称Taylor流,是一种以长气泡和液弹交替形式流动的流动形态。微通道内气-液弹状流因其气泡与液弹尺寸分布均一、停留时间分布窄、径向混合强等优点,是一种适于强化气-液反应的理想流型。本文首先介绍了微通道内气泡的生成机理、气泡和液弹长度,以及气泡生成阶段的传质特征。其次系统综述了主通道中弹状流动及传质过程的研究进展,包括气泡形状与液膜厚度、液弹内循环和泄漏流特征、气-液传质系数的测量与预测,以及物理与化学吸收过程中的传质特性等方面内容。最后阐述了当前研究的不足并展望了气-液弹状流的研究方向。  相似文献   

4.
The two-fluid model based on the kinetic theory of granular flow is considered to be a fundamental tool for modeling gas–solid fluidized beds and has been extensively used for the last couple of decades. However its verification and quantitative validation still remain insufficient for a wide range of reactor geometries and operating conditions. In this study simulations were performed using the two-fluid model for two-dimensional (2D) bubbling gas–solid fluidized beds with and without immersed horizontal tubes. The bubble characteristics – aspect ratio, shape factor, diameter and rise velocity – predicted by the simulation were compared and validated with experimental data obtained from pseudo-2D fluidized beds using digital image analysis technique. The predicted bubble shape and diameter were in good agreement with the experimental data for fluidized beds with and without immersed tubes. The simulation predicted higher bubble rise velocity compared to the experimental results obtained. This was due to the wall effect, which was not taken into consideration during the 2D simulation. In addition the influences of different drag laws, friction packing limits and solid-wall boundary conditions on the different bubble properties were investigated. The results showed that the choice of friction packing limits, drag laws and specularity coefficients have little influence on bubble properties.  相似文献   

5.
Closure laws are needed for the qualification of CFD codes for two-phase flows. In case of bubbly and slug flow, forces acting on the bubbles usually model the momentum transfer between the phases. Several models for such forces can be found in Literature. They show, that these forces depend on the liquid flow field as well as on the size and the shape of the bubbles. A validation of consistent sets of bubble force models for poly-disperse flows is given, basing on a detailed experimental database for vertical pipe flows, which contains data on the radial distribution of bubbles of different size as well as local bubble size distributions. A one-dimensional (1D) solver provides velocity profiles and bubble distributions in radial direction. It considers a large number of bubble size classes and is used for the comparison with the experiments. The simplified model was checked against the results of full 3D simulations done by the commercial code CFX-5.7 for simplified monodisperse cases. The effects of the number of bubbles classes as well as the effect of the lateral extension of the bubbles were analyzed. For the validation of bubble force models measured bubble size distributions were taken as an input for the calculation. On basis of the assumption of an equilibrium of the lateral bubble forces, radial volume fraction profiles were calculated separately for each bubble class. In the result of the validation of different models for the bubble forces, a set of Tomiyama lift and wall force, deformation force and Favre averaged turbulent dispersion force was found to provide the best agreement with the experimental data. Some discrepancies remain at high liquid superficial velocities.  相似文献   

6.
Previous studies on heat and mass transfer in the Taylor flow regime in microchannels have shown the transport (heat/mass) rates to be dependent on the length of the liquid slug. In order to understand the effect of slug length on transport rates and to have a one-to-one comparison with experimental data, a computational approach is required to simulate flows with liquid slugs and bubbles of controlled lengths.Here we describe and benchmark two approaches. The first, and conceptually simplest, is to generate bubbles and slugs in a long tube using a time-dependent boundary condition. In the second method, the flow and heat transfer in a single unit cell, consisting of a bubble surrounded by liquid slugs, is solved in a frame of reference moving with the bubble velocity. Both methods were implemented in ANSYS-Fluent.Simulations for a two-phase (liquid-only) Reynolds number of 713, Capillary number of 0.004 and void fraction of 0.366 for nitrogen-water flow were performed to compare the two techniques. There was a very large difference between the required computational mesh sizes and times for the two methods, with a wall clock time of 38 h on a single processor for the moving domain compared with 1460 h using four processors for the stationary domain approach. In addition, for a constant wall heat flux boundary condition, even with 14 bubbles present in a long tube thermal development was not achieved. The hydrodynamic and heat transfer results obtained from the two approaches were found to be very similar to each other and with results from our earlier verification and validation studies, giving a high degree of confidence in the implementation of both methods.  相似文献   

7.
Capillary flows inside microchannels with patterned‐surfaces are investigated theoretically and numerically. The surface energy method is used to derive an equivalent contact angle (ECA) model for small capillary number flows. The SIMPLE algorithm using a volume of fluid (VOF) method is adopted to investigate the flows in those microchannels. The flow characteristics such as the liquid front shapes and the evolution of the liquid lengths are obtained. The numerical results reveal that capillary flows in a patterned‐surface microchannel still follow the traditional capillary theories. The ECA model is confirmed by the numerical results. It indicates that the capillary flows inside the patterned‐surface microchannels can be estimated by means of the homogeneous‐surface microchannels with the equivalent contact angle. The ECA model provides a good criterion for the total wettability of a patterned‐surface microchannel, as well.  相似文献   

8.
Two-phase air-water and three-phase air-water-solids flows have been investigated in a 0.152 m internal diameter vertical column. Pressure drop across the distributor and average phase hold-up were measured for two-phase and three-phase flows over flow ranges of superficial gas velocity from 0 to 259 m/s and superficial liquid velocity from 0 to 0.0346 m/s. Gas hold-up/pressure-drop ratios were obtained as a function of superficial gas velocity and liquid flow rate. It was found that the bubble cap was better at gas distribution than that of the Koch static mixer in two-phase and three-phase vertical flows. Drift flux to gas hold-up and drift flux to gas flow rate correlations were obtained for two-phase and three-phase vertical flows. Three flow patterns, churn-turbulent, transition and ideal bubble flows, were observed for vertical upflow.  相似文献   

9.
On the CFD modelling of Taylor flow in microchannels   总被引:1,自引:0,他引:1  
With the increasing interest in multiphase flow in microchannels and advancement in interface capturing techniques, there have recently been a number of attempts to apply computational fluid dynamics (CFD) to model Taylor flow in microchannels. The liquid film around the Taylor bubble is very thin at low Capillary number (Ca) and requires careful modelling to capture it. In this work, a methodology has been developed to model Taylor flow in microchannel using the ANSYS Fluent software package and a criterion for having a sufficiently fine mesh to capture the film is suggested. The results are shown to be in good agreement with existing correlations and previous valid modelling studies. The role played by the wall contact angle in Taylor bubble simulations is clarified.  相似文献   

10.
微通道冷凝研究的进展与展望   总被引:5,自引:3,他引:2       下载免费PDF全文
微通道中的冷凝在微热管及微型燃料电池等器件中有着广泛的应用。本文综述了当前国内外微通道冷凝研究的现状,展望了该领域的未来研究方向。大量研究表明,控制微通道中冷凝与两相流动的主要作用力不是重力或浮力,而是表面张力。最新实验结果发现,随着通道直径的减小,微通道中主要的冷凝流型是间断的喷射流/弹状流/泡状流,而不是传统大直径通道中出现的由重力作用而导致的分层环状流。因此,未考虑表面张力的大尺度冷凝模型已不能完整描述微通道内的流动冷凝过程。对于间断流型,基于实验数据的半理论模型或经验关联式可能更为实用有效。润湿性和表面粗糙度等通道表面特性在微通道流动冷凝中有着重要的影响,这些因素的优化将会强化微通道中的冷凝换热。  相似文献   

11.
静态混合器气液两相流压降的数值模拟及实验研究   总被引:6,自引:0,他引:6  
气泡流经过静态混合器的压降问题涉及到舰船动力系统性能的好坏。在分析了气泡平均驰豫时间的基础上,结合k ε湍流模型,利用平衡流模型模拟静态混合器内形成的稀疏湍流气泡流,得到了混合器内两相流流场。空气—水系统的压力降实验表明,计算流体力学模拟能够很好地预测SMV型静态混合器内气泡流的压降,是静态混合器设计的有效手段。  相似文献   

12.
梁倩卿  卜亿峰  门卓武  马学虎 《化工进展》2021,40(11):5973-5980
微流体系统通常具备极大的比表面积、易于控制等优势,在气-液相传质、传热、反应等方面具有良好的应用前景。本文考察了6个气液相体系在矩形截面蛇形微通道中的气液两相泰勒流流动情况以及气泡和液弹的动态行为,以气泡截面形状的几何模型为基础,得到了微通道中净泄漏流的量化方程。同时发现在较大的操作区间内,蛇形微通道对泄漏流的可控性优于直形微通道。并且详细分析了不同气液相流量、液相物性(表面张力和黏度)和气泡长度对蛇形微通道主通道净泄漏流的具体影响。  相似文献   

13.
In recent years, population balance models coupled to computational fluid dynamics have been used as a tool to model bubbly flows. In this work, we established a setup to measure the local size distribution, the velocity and orientation of bubbles in different zones of a bubble column. As a population balance model, we used the sectional quadrature method of moments for the first time in OpenFOAM to simulate the local change in the bubble size distribution and compared its results to the quadrature method of moments as well as to the experimental results. A satisfactory agreement between local experimental values of three investigated flow rates and simulations were found and enables the characterization of heterogeneous bubbly regimes as found in industrial reactive bubble columns.  相似文献   

14.
The bubble size distribution of a foam produced in a rotor-stator mixer has been determined as a function of several mixing parameters such as the rotor speed, residence time, gas/liquid ratio and the viscosity of the liquid used. A Newton-Reynolds expression for a foam mixer has been determined using energy consumption measurements. Two types of shear fields have been distinguished in the foam mixer, laminar and turbulent, the type of shear field depending on the properties of the foam mixer. After a certain mixing time the bubble size distribution characterised by the mean bubble size was found to reach a stationary value. The stationary bubble size distribution has been correlated with the mixing conditions by a critical Weber number. Both in the laminar and in the turbulent shear field bubble size distributions have been determined as a function of several mixing parameters.  相似文献   

15.
采用高速摄像系统研究了对称分支形并行微通道内气液两相流及弹状气泡均匀性规律。实验中分别采用含0.3% SDS的甘油-水溶液与氮气作为液相和气相。观察到弹状流和泡状流两种流型,作出了由两相操作条件构成的流型图及流型转变线。结果表明,气泡非均匀性主要由两微通道内流体之间的相互作用、下游通道中流体动力学的反馈作用以及通道制造误差造成。随液相黏度增大,气泡均匀性变好;在高液相流量以及低气相压力下操作,气泡尺寸分布更易达到均匀。基于压力降守恒原理和微通道内气液两相流阻力模型,构建了两通道中气泡尺寸的预测模型。  相似文献   

16.
In this work, both experimental study and numerical simulation were carried out to investigate the replication capability and flow behavior of polymeric melt inside microchannels with high aspect ratio. For this purpose, a mold insert with microchannels having different layouts (parallel and transverse to the main flow direction) and various cross sectional shapes (triangle, rectangle, and semicircle) was designed and fabricated. The filled length and surface morphology of the microfeatures molded under different conditions were characterized using scanning electron microscope and optical microscope. It was found that the cross sectional shape had clear influence on the filled length of the microfeatures, with a dependence on the mold layout. Moreover, serious hesitation of polymeric flows in microchannels took place in the transverse layout, which led to eccentric line defects. However, such defects were not observed in the parallel layout. At last, the specific mechanisms of how the cross sectional shape affected the replication capability and how the line defects in the microfeatures' surface formed were discussed. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

17.
Transport phenomena in the Taylor flow regime for gas–liquid flows in microchannels have received significant attention in recent years. Whilst the hydrodynamics and mass transfer rate in the Taylor flow regime have been studied extensively using experimental and numerical techniques, studies of heat transfer in Taylor flow have been neglected. In this work, the flow and heat transfer in this regime is studied using the volume of fluid (VOF) and level-set techniques to capture the gas–liquid interface, as implemented in the ANSYS Fluent and TransAT codes, respectively. The results obtained from the two different codes are found to match very closely. Fully-developed flow and heat transfer are studied using the VOF method for a Reynolds number (Re) of 280, Capillary number (Ca) of 0.006 and homogeneous void fraction (β) of 0.51 for constant wall heat flux (H) and constant wall temperature (T) boundary conditions. The Nusselt numbers obtained for both cases are 2.5 times higher than those for liquid-only flow. The effects of the mixture velocity and the homogeneous void fraction on flow and heat transfer are also studied.  相似文献   

18.
Turbulent liquid–gas vertical channel flows laden with microbubbles are investigated using large eddy simulation (LES) two-way coupled to a Lagrangian bubble tracking technique. Upward and downward flows at shear Reynolds numbers of Re τ = 150 and 590 are analyzed for three different microbubble diameters of 110, 220, and 330 μm. Predicted results are compared with published direct numerical simulation results although, with respect to comparable studies available in the literature, the range of bubble diameters and shear Reynolds numbers considered herein is extended to larger values. Microbubble concentration profiles are analyzed, with the microbubbles segregating at the wall in upflow conditions and moving toward the channel centre in downflow. The various forces acting on the bubbles, and the effect of the flow turbulence on the bubble concentration, are considered and quantified. Overall, the results suggest that the level of detail achievable with LES is sufficient to predict the fluid structures impacting bubble behavior. Therefore, LES coupled with Lagrangian bubble tracking shows promise for enabling the reliable prediction of bubble-laden flows that are of industrial relevance. © 2018 American Institute of Chemical Engineers AIChE J, 65: 1325–1339, 2019  相似文献   

19.
实验研究了T型微通道内浆料中气泡的生成过程和尺寸。聚丙乙烯微球浆料和N2分别为连续相和分散相。气泡的生成过程可分为三个阶段:膨胀阶段、挤压阶段和快速夹断阶段。随着浆料浓度的增大,膨胀阶段时长几乎没有变化,挤压阶段显著缩短,而快速夹断阶段略有缩短。在膨胀阶段和快速夹断阶段,气泡颈部宽度与无量纲剩余时间均呈幂率关系,而挤压阶段气泡颈部宽度与时间呈线性关系。考察了浆料浓度、气相和浆料流量对气泡生成尺寸的影响。结果表明气泡尺寸随气相流量的增大而增大,随液相流量和浆料浓度的增大而减小。  相似文献   

20.
孟维军  徐一鸣  李平  赵曦  严佩蓉  徐建鸿 《化工进展》2021,40(11):5998-6008
随着精密加工技术的发展,特征尺寸小于1mm的微化工设备因其高效的传质传热效能及本质安全特性逐渐被应用在许多有机合成工艺中。微通道内连续合成十二烷基苯磺酸是开发高效、绿色、安全的磺化工艺的重要基础。本文通过响应面实验方法,研究温度、流量、SO3/DDB摩尔比对微反应器内十二烷基苯磺化工艺的交互影响,发现产品活性物质含量受流量影响最大,而T形结构微混合器中流量这一因素主要影响流体碰撞强度和停留时间。因此,利用CFD计算流体力学方法对T形微混合器内流体进行表征。模拟了T形混合器内不同流速下SO3和DDB的混合状态,发现其混合状态变化规律与实验所得结论基本一致,低流速时混合器内混合效果不强,随着流速的增加,混合器内组分互相混合的区域明显增多。认为是流速的增大使得混合器内流体受到的惯性力增大,且增强了混合处流体的碰撞,相对地使混合器内流体受到表面张力减小,增强了混合效果。研究了有无溶剂条件下不同流速时T形微混合器内水和甲苯两相流体混合状态,发现无溶剂条件下流速为0.12m/s时,两相流体受界面张力作用发生一定程度混合后分离呈泰勒流形式流动;流速为0.15~0.17m/s时,混合现象消失,流体直接呈泰勒流形式;流速为0.19~0.21m/s时,受对撞效果增强影响再次出现混合部分。而有溶剂条件下,流体不再出现明显的泰勒流,而是以特征尺寸小于管道尺寸的小液滴的形式在管道内流动,流速为0.12~0.17m/s时流体呈不规则流动,流速为0.19~0.21m/s时流体以密度从大到小由内而外分布在管道径向方向上。认为是溶剂的引入减小了界面张力的作用,使得Re数升高时,惯性力的主导作用更强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号