首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Measurements of gas-liquid and liquid-solid mass transfer coefficients were performed in two types of three-phase laboratory reactor equipped with stationary catalytic basket and multiple impeller. Those reactors are called Robinson-Mahoney reactors. Local liquid-solid mass transfer coefficients were measured using naphtol particle dissolution in n-heptane at several agitation speeds. Experiments had shown that local coefficients depended on the particle locations in the basket and agitation speeds. The local coefficient values and profiles were quite similar for both studied reactors even though the reactor designs were different. Similar values of RM basket thicknesses might account for this phenomenon because the liquid-solid mass transfers could be correlated with the ones in packed beds with forced liquid circulation. Gas-liquid mass transfer coefficients were measured using standard dynamic absorption methods in air-water or hydrogen-gas oil system. As in stirred tanks, the gas-liquid mass transfers were linked to the impeller designs and characteristics (gas-inducing or classical impeller) and to the operating conditions such as agitation speeds and fluid properties. However, correlations applicable to stirred tank reactors can be used with Robinson-Mahoney reactors, the baskets behaving like additional baffles or reduction of tank diameters.  相似文献   

2.
Multiphase reactors involving gas, liquid, and solid phases have several important applications in the chemical industry, particularly in catalytic processes. Some of the well-known examples are: hydrogenation and oxidation of organic compounds, hydro-processing coal-derived and petroleum oils, Fischer-Tropsch synthesis, and methanation reactions. Due to the presence of three phases, the problem of reactor design is often important to achieve effective mass and heat transfer as well as a mixing pattern favorable to the particular process. The reactors are mainly of two types: (a) solid catalyst is suspended either by mechanical agitation or gas-induced agitation and (b) solid catalyst is in a fixed bed with concurrent or countercurrent feed of gas and liquid re-actants. The reactor types conventionally used in industry are: (a) mechanically agitated or bubble column slurry reactors and (b) trickle-bed or packed-bed bubble reactor. The various design and modeling aspects of these reactors have been reviewed by Satterfield [1], Chaudhari and Ramachandran [2], Shah [3,4], Ramachandran and Chaudhari [5], Shah et al. [6], and Herskowitz and Smith [7]. In several industrial processes these reactor designs are modified to achieve a certain specific objective, such as better heat or mass transfer, higher catalyst efficiency, better reactor performance and selectivity, etc. Similarly, specially designed reactors are often used for laboratory kinetic studies or to understand a certain phenomenon. Thus, novel multiphase reactors are becoming important from both academic and industrial viewpoints. Some of the recently introduced novel gas-liquid-solid reactor types are: (a) loop recycle slurry reactors, (b) basket-type reactors, (c) ebullated-bed reactors, (d) internal or external recycle reactors, (e) multistage slurry or packed-bed reactors, (f) column reactors with sieve trays or multiple agitators, (g) gas-induced agitated reactors, and (h) horizontal-packed-bed reactors. are being used in several new commercial processes, and various design aspects, such as hydrodynamics and mass and heat transfer, have been the subject of investigations in the last few years. However, no attempt to review the scattered information on these novel gas-liquid-solid reactors has been made. Therefore, the main objective of this paper is to review important developments in novel gas-liquid-solid reactors. For each type of reactor, advantages, disadvantages, and applications are discussed. Further, the status of information on hydrodynamics and mass transfer parameters and scale-up considerations is reviewed. These novel reactor designs are being used in several new commercial processes, and various design aspects, such as hydrodynamics and mass and heat transfer, have been the subject of investigations in the last few years. However, no attempt to review the scattered information on these novel gas-liquid-solid reactors has been made. Therefore, the main objective of this paper is to review important developments in novel gas-liquid-solid reactors. For each type of reactor, advantages, disadvantages, and applications are discussed. Further, the status of information on hydrodynamics and mass transfer parameters and scale-up considerations is reviewed.  相似文献   

3.
Multiphase reactors involving gas, liquid, and solid phases have several important applications in the chemical industry, particularly in catalytic processes. Some of the well-known examples are: hydrogenation and oxidation of organic compounds, hydro-processing coal-derived and petroleum oils, Fischer-Tropsch synthesis, and methanation reactions. Due to the presence of three phases, the problem of reactor design is often important to achieve effective mass and heat transfer as well as a mixing pattern favorable to the particular process. The reactors are mainly of two types: (a) solid catalyst is suspended either by mechanical agitation or gas-induced agitation and (b) solid catalyst is in a fixed bed with concurrent or countercurrent feed of gas and liquid re-actants. The reactor types conventionally used in industry are: (a) mechanically agitated or bubble column slurry reactors and (b) trickle-bed or packed-bed bubble reactor. The various design and modeling aspects of these reactors have been reviewed by Satterfield [1], Chaudhari and Ramachandran [2], Shah [3,4], Ramachandran and Chaudhari [5], Shah et al. [6], and Herskowitz and Smith [7]. In several industrial processes these reactor designs are modified to achieve a certain specific objective, such as better heat or mass transfer, higher catalyst efficiency, better reactor performance and selectivity, etc. Similarly, specially designed reactors are often used for laboratory kinetic studies or to understand a certain phenomenon. Thus, novel multiphase reactors are becoming important from both academic and industrial viewpoints. Some of the recently introduced novel gas-liquid-solid reactor types are: (a) loop recycle slurry reactors, (b) basket-type reactors, (c) ebullated-bed reactors, (d) internal or external recycle reactors, (e) multistage slurry or packed-bed reactors, (f) column reactors with sieve trays or multiple agitators, (g) gas-induced agitated reactors, and (h) horizontal-packed-bed reactors. are being used in several new commercial processes, and various design aspects, such as hydrodynamics and mass and heat transfer, have been the subject of investigations in the last few years. However, no attempt to review the scattered information on these novel gas-liquid-solid reactors has been made. Therefore, the main objective of this paper is to review important developments in novel gas-liquid-solid reactors. For each type of reactor, advantages, disadvantages, and applications are discussed. Further, the status of information on hydrodynamics and mass transfer parameters and scale-up considerations is reviewed. These novel reactor designs are being used in several new commercial processes, and various design aspects, such as hydrodynamics and mass and heat transfer, have been the subject of investigations in the last few years. However, no attempt to review the scattered information on these novel gas-liquid-solid reactors has been made. Therefore, the main objective of this paper is to review important developments in novel gas-liquid-solid reactors. For each type of reactor, advantages, disadvantages, and applications are discussed. Further, the status of information on hydrodynamics and mass transfer parameters and scale-up considerations is reviewed.  相似文献   

4.
A review of recent developments in multiphase catalytic processes for the manufacture of pharmaceutical and fine chemicals, and an overview of reaction engineering principles needed for analysis of the local and overall reaction rate for reactor design and interpretation of performance is presented. The first section gives an overview of recent applications in pharmaceuticals and fine chemicals where heterogeneous and homogeneous catalyzed multiphase chemistries have been identified that are more efficient and represent safer operation with decreased environmental impact when compared to existing processes. The next three sections describe a scheme for classification of the various types of reactions that are typically encountered, along with distinguishing features of these reactions and commonly used multiphase reactor types. This is followed by a review of reaction engineering principles needed for describing the local overall rate of reaction, including a summary of typical models for evaluation of the intrinsic reaction kinetics, incorporation of transport-kinetic interactions, methods for identification of the controlling reaction regime and assessment of the relative contribution of transport effects. The next two sections set forth basic reactor models for commonly used reactor types, including mechanically agitated reactors and bubble column reactors. A brief summary of commonly used correlations for estimation of mass transfer coefficients in these reactors for gas-liquid and liquid-liquid systems is also given. The final section is devoted to a summary of key reaction engineering issues that occur in pharmaceutical and fine chemical multiphase catalytic processes, along with some thoughts on future needs and challenges.  相似文献   

5.
Monolith catalyst supports are attractive as fixed bed reactors that, at the scale of the catalyst dimension, exhibit the mass transfer characteristics of slurry reactors. This paper presents a reactor design study for the single-pass conversion of dinitrotoluene in a loop configuration with an external heat exchanger. The advantage of such a loop system is the elimination of a solvent, which in turn allows more reaction heat to be recovered. The advantages of using a monolith are the low pressure drop at high recycle ratio, while maintaining good mass transfer characteristics. The modelling includes internal diffusion limitation, external mass transfer characteristics, heat effects, maldistribution and flow stability. The optimal design is found at the lowest hydrodynamic stable flow rates, where the mass transfer is fastest and the residence time in the column maximal.  相似文献   

6.
7.
浆态床反应器流体力学行为研究及工业应用   总被引:1,自引:1,他引:0       下载免费PDF全文
浆态床是一种重要的气-液-固三相反应器,具有结构简单,传热、传质性能好以及催化剂可在线补加和更换等优点,在学术研究和工业应用上备受关注。对浆态床反应器的流型、气含率、气泡行为、传质、传热等研究进行了总结,并对温度、压力、液体性质等参数对于流体力学性质的影响进行了分析。介绍了多级浆态床和构件式浆态床新型反应器,对浆态床在大化工、精细化工及环保等重要过程中的工业应用进行了总结,并对浆态床反应器的应用前景和研究趋势进行了展望。  相似文献   

8.
高温高压浆态鼓泡床反应器中的气-液传质   总被引:3,自引:0,他引:3       下载免费PDF全文
The gas-liquid mass transfer of H2 and CO in a high temperature and high-pressure three-phase slurry bubble column reactor is studied. The gas-liquid volumetric mass transfer coefficients kLa are obtained by measuring the dissolution rate of H2 and CO. The influences of the main operation conditions, such as temperature, pressure,superficial gas velocity and solid concentration, are studied systematically. Two empirical correlations are proposed to predict kLa values for H2 and CO in liquid paraffln/solid particles slurry bubble column reactors.  相似文献   

9.
曹俊雅  张绅  张涛  雍玉梅  杨超 《化工学报》2019,70(10):3914-3923
上流式反应器设置在固定床渣油加氢反应器前有利于提高渣油原料适用性,延长装置运行时间。实验研究了上流式反应器气液相间传质,采用五齿柱形氧化铝催化剂模拟工业催化剂颗粒,水溶液模拟渣油,空气模拟氢气,采用无氧水物理吸收和亚硫酸钠化学吸收的方法,测定了在高气液比的条件下上流式反应器床层气液相间传质特性实验。考察了表观气速、表观液速、填料粒径、内构件、催化剂级配和床层高径比对液相体积传质系数和气液相界比表面积的影响规律。实验数据表明,液相体积传质系数随着气、液速的增大而增大;随填料颗粒增大而减小;在床层内安装合适的内构件或增大反应器高径比,能够促进气液相间传质。基于实验数据拟合了适合上流式反应器液相体积传质系数和气液相界比表面积的经验关联式,拟合误差最大分别为12%和24%;表明所建气液相间传质的经验关联式能更好地预测上流式反应器中的气液相间传质特性。  相似文献   

10.
11.
The commercially established slurry bubble column and fixed-bed reactors for low temperature Fischer-Tropsch synthesis were compared with novel micro- and monolith-reactors by mathematical modeling. Special attention was paid to the influence of catalytic activity on the reactor efficiency and the losses by mass and heat transfer resistances. The simulation results show that a micro-structured reactor exhibits the highest productivity per unit of catalyst volume followed by slurry bubble column reactor and monolith reactor. The fixed-bed reactor that was assumed to operate in the trickle-flow regime has a particularly low catalyst specific productivity due to severe mass transfer resistances. However, caused by a very low ratio of catalyst and reactor volume the micro-reactor has only a similarly low productivity per unit of reactor volume as the fixed-bed reactor. In contrast, the reactor specific productivity of slurry bubble column reactor and monolith reactor is up to one order of magnitude higher.  相似文献   

12.
Conventional and emerging processes that require the application of multiphase reactors are reviewed with an emphasis on catalytic processes. In the past, catalyst discovery and development preceded and drove the selection and development of an appropriate multiphase reactor type. This sequential approach is increasingly being replaced by a parallel approach to catalyst and reactor selection. Either approach requires quantitative models for the flow patterns, phase contacting, and transport in various multiphase reactor types. This review focuses on these physical parameters for various multiphase reactors. First, fixed-bed reactors are reviewed for gas-phase catalyzed processes with an emphasis on unsteady state operation. Fixed-bed reactors with two-phase flow are treated next. The similarities and differences are outlined between trickle beds with cocurrent gas-liquid downflow, trickle-beds with countercurrent gas-liquid flow, and packed-bubble columns where gas and liquid are contacted in cocurrent upflow. The advantages of cyclic operation are also outlined. This is followed by a discussion on conventional reactors with mobile catalysts, such as slurry bubble columns, ebullated beds, and agitated reactors. Several unconventional reactor types are reviewed also, such as monoliths for two-phase flow processing, membrane reactors, reactors with circulating solids, rotating packed beds, catalytic distillation, and moving-bed chromatographic reactors.

Numerous references are cited throughout the review, and the state-of-the-art is also summarized. Measurements and experimental characterization methods for multiphase systems as well as the role of computational fluid dynamics are not covered in a comprehensive manner due to other recent reviews in these areas. While it is evident that numerous studies have been conducted to elucidate the behavior of multiphase reactors, a key conclusion is that the current level of understanding can be improved further by the increased use of fundamentals.  相似文献   

13.
A methodology for the determination of mass transfer resistances of fast reactions in three‐phase mechanically agitated slurry reactors under the reaction conditions is presented. The mass transfer resistances affect significantly the overall mass transfer rate, the design equation and consequently the scale up of the reactor. There is not established methodology to separate the mass transfer resistances under reaction conditions by changing catalyst loading and manipulating the process variables, pressure and agitation speed. This allows to avoid the use of different catalyst particles and give the chance to calculate the mass transfer resistances without caring about the type of catalyst. We calculate each mass transfer resistance under conditions which do not allow to neglect any of the resistances. It is shown that the level off of mass transfer rate which is developed in the plot of mass transfer rate against agitation speed plots is not enough to determine the limiting regime. The hydrogenation of styrene over Pd/C (5% catalyst content) is used as case study to demonstrate the methodology. © 2016 American Institute of Chemical Engineers AIChE J, 63: 273–282, 2017  相似文献   

14.
介绍了微管反应器和微管内环己烷氧化反应的特点;详述了微管内环己烷无催化氧化的反应工艺、微管内气液流动情况、反应机理以及微管内壁负载催化剂的环己烷催化氧化反应工艺;指出无催化及内壁涂覆催化剂的微管内环己烷氧化反应在改善反应的安全性、强化气液传质效果和提高催化性能等方面具有较大优势,微管内壁负载纳米金催化剂的反应器形式在环己烷氧化反应中前景看好。  相似文献   

15.
Despite many innovations in the intensification of catalytic multiphase reactors for the small and medium scale manufacture of chemicals, there have as yet been relatively few commercial successes. One reason for this might be that many of these developments inherently incorporate a fixed catalyst, which may not suit an industry that is based on principles of batch manufacture and multi-product plant. This study evaluates an intensified reactor that encompasses the opportunities demonstrated from structured flows and thin channels, together with a mobile, slurry catalyst, namely a capillary reactor with gas/liquid/suspended catalyst flow. A downflow single capillary reactor (SCR) was designed, built and evaluated for the selective hydrogenation of isophorone to trimethyl cyclohexanone using commercial Pd- and Rh-based catalysts. Using the single capillary arrangement, the reaction was shown to be operating under kinetic control.

Comparison of the rate of hydrogenation with autoclave showed a significant increase of the reaction rate when capillary reactor was used. The temperature of reaction is a crucial factor in tuning the reaction towards different products. The constant relative reaction rate obtained for different catalyst loading as well as the calculated value of the apparent activation energy show that the reaction of hydrogenation of isophorone is not mass transfer limited in the single capillary reactor.  相似文献   


16.
介绍了一种新颖的规整结构催化剂。它在废气排放处理等气相催化反应中已表现出优于常规催化剂的优良催化性能,在气液固多相催化反应领域的研究也表明它能够应用于更多的催化反应。将这种催化剂和反应器结构特性与常规催化反应中应用的固体催化剂和反应器进行了比较,结果表明它有可能替代浆态床和固定床反应器,具有良好的应用前景。  相似文献   

17.
旋转泡沫填料反应器是一种新型多相搅拌釜式反应器,其将传统的搅拌桨替换成圆环型泡沫填料,可有效强化反应器内多相间传质混合过程,且多孔填料可作为催化剂载体,能减小多相催化反应中固体催化剂的使用量,具有替换传统多相搅拌釜式反应器和浆态反应器的潜力,将有较好的应用前景。本文详细阐述了旋转泡沫填料反应器的结构和反应器内多相流动形式,着重介绍了反应器内多相流动特性的研究进展及反应器内传质性能的研究现状,并与传统的多相反应器传质性能进行比较;从应用方面分析了反应器用于葡萄糖催化氧化、苯乙烯催化加氢等多相过程的强化方式及优势,通过对比得出旋转泡沫填料反应器能有效降低化工过程中物耗、提高物料的利用率;介绍了与旋转泡沫填料反应器类似的其他多孔式搅拌桨反应器的研究进展,分析了这类反应器的优势,并对其性能进行对比;最后,对旋转泡沫填料反应器研究的不足及未来的发展进行了阐述和展望。  相似文献   

18.
Industrial bubble column reactors for Fischer-Tropsch (FT) synthesis include complex hydrodynamic, chemical and thermal interaction of three material phases: a population of gas bubbles of different sizes, a liquid phase and solid catalyst particles suspended in the liquid. In this paper, a CFD model of FT reactors has been developed, including variable gas bubble size, effects of the catalyst present in the liquid phase and chemical reactions, with the objective of predicting quantitative reactor performance information useful for design purposes. The model is based on a Eulerian multifluid formulation and includes two phases: liquid-catalyst slurry and syngas bubbles. The bubble size distribution is predicted using a Population Balance (PB) model. Experimentally observed strong influence of the catalyst particles concentration on the bubble size distribution is taken into account by including a catalyst particle induced modification of the turbulent dissipation rate in the liquid. A simple scaling modification to the dissipation rate is proposed to model this influence in the PB model. Additional mass conservation equations are introduced for chemical species associated with the gas and liquid phases. Heterogeneous and homogeneous reaction rates representing simplified FT synthesis are taken from the literature and incorporated in the model.Hydrodynamic effects have been validated against experimental results for laboratory scale bubble columns, including the influence of catalyst particles. Good agreement was observed on bubble size distribution and gas holdup for bubble columns operating in the bubble and churn turbulence regimes. Finally, the complete model including chemical species transport was applied to an industrial scale bubble column. Resulting hydrocarbon production rates were compared to predictions made by previously published one-dimensional semi-empirical models. As confirmed by the comparisons with available data, the modeling methodology proposed in this work represents the physics of FT reactors consistently, since the influence of chemical reactions, catalyst particles, bubble coalescence and breakup on the key bubble-fluid drag force and interfacial area effects are accounted for. However, heat transfer effects have not yet been considered. Inclusion of heat transfer should be the final step in the creation of a comprehensive FT CFD simulation methodology. A significant conclusion from the modeling results is that a highly localized FT reaction rate appears next to the gas injection region when the syngas flow rate is low. As the FT reaction is exothermal, it may lead to a highly concentrated heat release in the liquid. From the design perspective, the introduction of appropriate heat removal devices may be required.  相似文献   

19.
In this work, a pellet string reactor was characterized with respect to hydrodynamics and mass transfer. The catalyst packing consists of a cylindrical channel with a diameter of 1.41 mm, which was filled with spherical catalyst particles, having an outer diameter of 0.8 mm. Under reaction conditions (liquid phase hydrogenation of α‐methylstyrene) overall (gas‐liquid‐solid) volumetric mass transfer coefficients for hydrogen between 0.8 and 5.5 s–1 were computed. Due to high mass transfer rates and simple reactor geometry, pellet string reactors can be applied in industry as highly efficient reaction units.  相似文献   

20.
李友凤  叶红齐  周虎  何显达 《化学工程》2012,40(3):48-52,66
在T型对撞反应器的基础上,对其结构进行改进,设计了旋流锥型对撞、T型旋撞和旋流锥型旋撞(二次旋转)3种撞击流反应器。用化学吸收法测量了这几种不同结构的微反应器在气液二相逆流接触条件下平均相界比表面积α及液相吸收传质系数kL;进而分析了反应器进口结构、尺寸和流体流量等条件对传质性能的影响。结果表明:旋撞比直撞的传质系数大,二次旋撞的比一次旋撞的传质系数要大;撞击区进口尺寸越小,气液流体的流量越大,反应器的传质系数越大;液相传质系数较常规气液接触设备的至少高1—2个数量级,其传质强化的原因主要源于微反应器内相界比表面积大幅度地增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号