首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 272 毫秒
1.
The equilibrium vaporization of UMoO6(s) in dry air was studied by the transpiration method in the temperature interval 1110°≤ T (K) ≤ 1250°. Apparent pressure of the trimer measured over the two-phase mixture UMoO6+ U3O8, with dry air as the carrier gas, was used to calculate the partial pressure of the trimer, (MoO3)3(g). In accordance with the vaporization reaction (UMoO6) = 1/3(U3O8) + 1/6(MoO3)3 (g) + 1/6O2 (g), the free energy of formation of UMoO6)(s) is given by (δ G° in kJ-mol−1) δ G° (UMoO6) = (−1962 ± 10) + (0.463 ± 0.008) T  相似文献   

2.
The standard Gibbs energy of formation of the spinel MgAl2O4 from component oxides, MgO and α-Al2O3, has been determined in the temperature range 900 to 1250 K using a solid-state cell incorporating single-crystal CaF2 as the solid electrolyte. The cell can be represented as—Pt,O2,MgO+MgF2|CaF2|MgF2+MgAl2O4+α-Al2O3,O2,Pt—The standard Gibbs energy of formation from binary oxides, computed from the reversible emf, can be represented by the expression—capdelta G °f,ox=−23600 − 5.91 T (±150) J/mol—The 'second-law' enthalpy of formation of MgAl2O4 obtained in this study is in good agreement with high-temperature solution calorimetric studies reported in the literature.  相似文献   

3.
It has been found that the enthalpy of formation of perovskite compounds, ΔfH° (ABO3, B = transition metais), from binary oxides can be well characterized in terms the tolerance factor, t≡(rA+ ro)√2 (rB+ ro), where rA and rB are the radii of A-site ions with 12-coordination and B-site ions with 6-coordination, respectively, and ΔfH°=−168 + 270(1 − t) kJ·mol−1 for AIBVO3, ΔfH°=−125 + 1000(1 − t) kJ·mol−1 for AIIBIVO3, and ΔfH°=− 90 + 720(1 − t) kJ·mol−1 for AIIIBIIIO3. Although the thermodynamic data of K2NiF4 compounds are not extensive, a similar regularity can be found when use is made of the radii of A-site ions with 9-coordination for the K2NiF4 compounds. These correlations will be quite useful in predicting.  相似文献   

4.
The free energy of reaction for the formation of mullite from its oxide components was derived from equilibrium studies in the system CoO-Al2O3-SiO2. Within this system there appears, at solidus temperature in a certain composition area, the phase assemblage mullite + silica + spinel (= cobalt aluminate) + liquid. Determination of the oxygen pressure of a gas phase at which metallic cobalt precipitates from this phase assemblage and from the phase assemblage spinel (= cobalt aluminate) + corundum in the system CoO-Al2O3 permits calculation of ΔG° for the reaction 3Al2O3+ 2SiO2= Al6Si2O13. The value obtained at 1422°C is -5.8 kcal.  相似文献   

5.
(Ni1− x Zn x )Nb2O6, 0≤ x ≤1.0, ceramics with >97% density were prepared by a conventional solid-state reaction, followed by sintering at 1200°–1300°C (depending on the value of x ). The XRD patterns of the sintered samples (0≤ x ≤1.0) revealed single-phase formation with a columbite ( Pbcn ) structure. The unit cell volume slightly increased with increasing Zn content ( x ). All the compositions showed high electrical resistivity (ρdc=1.6±0.3 × 1011Ω·cm). The microwave (4–5 GHz) dielectric properties of (Ni1− x Zn x )Nb2O6 ceramics exhibited a significant dependence on the Zn content and to some extent on the morphology of the grains. As x was increased from 0 to 1, the average grain size monotonically increased from 7.6 to 21.2 μm and the microwave dielectric constant (ɛ'r) increased from 23.6 to 26.1, while the quality factors ( Q u× f ) increased from 18 900 to 103 730 GHz and the temperature coefficient of resonant frequency (τf) increased from −62 to −73 ppm/°C. In the present work, we report the highest observed values of Q u× f =103 730 GHz, and ɛ'r=26.1 for the ZnNb2O6-sintered ceramics.  相似文献   

6.
The vaporization of LaCrO3(s) and samples of the composition LaCrO3+ La2O3 was investigated in the temperature range of 1887-2333 K by Knudsen effusion mass spectrometry using Knudsen cells made of tungsten lined completely with iridium. The species Cr(g), CrO(g ), CrO2(g), and LaO(g) were identified in the vapor. Their partial pressures were determined by calibration with pure platinum solid. The thermodynamic activity of Cr2O3, a cr2o3 in LaCrO3 for the Cr203-poor phase boundary of this phase was In aCr2o3= -(17953/T) - 0.485 (temperature T given in K) for the temperature range of the measurements with a probable overall error of ± 13%. The following values and temperature dependence of ΔG°f,T resulted for the formation of LaCrO3(s) according to the reaction 0.5Cr2O3(s) + 0.5La2O3(s) → LaCrO3(s): ΔG°f,2100= -78.9 ± 1.1 kj/mol, Δ H°f,298= -76.8 ± 5.2 kj/mol, and ΔG°r(kJ/mol) = -74.7 - 0.00202 T . Computations for the vaporization of LaCrO3 were conducted to show the volatility of this material in different atmospheres at high temperatures.  相似文献   

7.
The electrical properties of Sr0.5Ba0.3TiO3 in the presence of Nb2O5 as a donor, 3Li2O · 2SiO2 as a sintering agent, and Bi2O3 as a dopant have been studied. When the compositions of the ceramics were 1 mol Sr0.7Ba0.3TiO3+ 0.5 mol% Nb2O5+ 2 mol% 3Li2O · 2SiO2+ 0.2 mol% Bi2O3, the ceramics were sintered at 1100°C and exhibited the following characteristics: apparent dielectric constant ɛ, 25000; loss factor tan δ, 2%; insulating resistivity ρj, 1010Ω· cm; variation of dielectric constant with temperature Δɛ/ɛ (−25° to +85°C), +10%, −14%. ɛ and tan δ show only small changes with frequency. The study shows this ceramic can be used in multilayer technology.  相似文献   

8.
The vapor pressure of plutonium dioxide (PuO2) was investigated in the range 1450° to 1775°C in air, argon, and oxygen atmospheres by a transpiration technique. There were strong indications that PuO2 can vaporize congruently or as a suboxide species, depending on the atmosphere. The δH°298 for vaporization in 1 atm of oxygen is approximately 154,000 cal per mole. The estimated standard free energy of formation (δG°f) of gaseous PuO2 is −121,000 + 10.7 T from 1227° to 1827°C.  相似文献   

9.
A complete solid-solution series exists between diopside (CaMgSi2O6) and its nickel analogue, "niopside"(CaNiSi2O6). Activity–composition relations within this solid solution, and the stability of the end member CaNiSi2O6, have been determined by equilibrating CaNiSi2O6 with SiO2, CaSiO3, and metallic Ni in atmospheres of known oxygen pressures. Within limits of accuracy of the experiments, the solution is ideal at 1350°C. From the experimental data obtained in the present investigation, the standard free energy (Δ G °) of formation of CaNiSi2O6 according to the equation CaO + NiO + 2SiO2= CaNiSi2O6 is calculated to be Δ G °=−165862 + 42.40 T J. Experiments in the system CaO–NiO–SiO2 have shown that the nickel analogue of the phase pseudo-enstatite (MgSiO3) is unstable with respect to SiO2 and nickel olivine (Ni2SiO4), and the nickel analogues of the phases akermanite (Ca2MgSi2O7) and monticellite (CaMgSiO4) are unstable relative to the phase assemblage pseudo-wollastonite (CaSiO3) plus NiO. In the system CaO–MgO–NiO–SiO2, however, substitution of Ni for Mg in these phases was observed. The percentage substitution of Ni for Mg in the phases is given in parentheses: diopside (100%), olivine (100%), enstatite (18%), akermanite (20%), and monticellite (57%).  相似文献   

10.
The standard Gibbs free energies of formation of CuAlO2 and CuAl2O4 were determined in the range 700° to 1100°C, using emf measurements on the galvanic cells (1) Pt,CuO +] Cu2O/CaO-ZrO2/O2,Pt; (2) Pt,Cu +] CuAlO2+] Al2O3/CaO-ZrO2/ Cu +] Cu2O,Pt; and (3) Pt,CuAl2O4+] CuAlO2+]Al2O3/CaO-ZrO2/O2,Pt. The results are compared with published information on the stability of these compounds. The entropy of transformation of CuO from tenorite to the rock-salt structure is evaluated from the present results and from earlier studies on the entropy of formation of spinels from oxides of the rock-salt and corundum structures. The temperatures corresponding to 3-phase equilibria in the system Cu2O-CuO-Al2O3 at specified O2 pressures calculated from the present results are discussed in reference to available phase diagrams.  相似文献   

11.
12.
A solid electrolyte electrochemical cell of the type Pt|Ni:NiO a =1∥ZrO2+7.5% CaO∥Ni:NiO a <1+glass|Pt was used to measure the activities of NiO in sodium disilicate glass from 750° to 1100°C. The data indicate a solubility varying from 11 mol% (5.0 wt%) at 800° to 20 mol% (9.3 wt%) at 1100°C. From the variation in NiO activity, the activity of sodium disilicate in glass solution was estimated; from these combined data partial molar free energies and entropies of solution of NiO and Na2Si2O5 and free energies and entropies of mixing were calculated. A partial phase diagram for the system NiO-Na2Si2O5 proposed from solubility data indicates a eutectic at ∼12 mol% (5.3 wt%) NiO at 830°C.  相似文献   

13.
The formation process of Ba2La8(SiO4)6O2 was clarified using thermogravimetry–differential thermal analysis (TG-DTA) and a high-temperature powder X-ray diffraction (HT-XRD) method. Phase changes identified from the HT-XRD data surprisingly corresponded to the weight loss and/or endothermic peaks observed in the TG-DTA curves. Raw material with the composition Ba2La8(SiO4)6O2 was completely reacted at 1400°C and produced only an apatite-type compound without a secondary phase. Moreover, the synthesis of Ba2+ x La8− x (SiO4)6O2−δ crystals with x = 0–2 was attempted using a solid-state reaction.  相似文献   

14.
The columbites MgNb2O6, MgTa2O6, and corundum-type Mg4Nb2O9 ceramics were prepared by the conventional solid-state ceramic route. The structure and microstructure of the sintered samples were investigated by X-ray diffraction and scanning electron microscopic techniques. The microwave dielectric properties of the samples were measured by the resonance method in the frequency range 4–6 GHz. The dielectric properties have been tailored by forming a solid solution between MgNb2O6 and MgTa2O6 and by the substitution of TiO2 for Nb2O5 in both MgNb2O6 and Mg4Nb2O9 ceramics. The Mg(Nb0.7Ta1.3)O6 has ɛr=29, Q u× f =67 800 GHz, and τf=0.8 ppm/°C and the MgO–(0.4)Nb2O5–(1.5)TiO2 composition has ɛr=34.5, Q u× f =81 300 GHz, and τf=−2 ppm/°C.  相似文献   

15.
The glass formation region, crystalline phases, second harmonic (SH) generation, and Nd:yttrium aluminum garnet (YAG) laser-induced crystallization in the Sm2O3–Bi2O3–B2O3 system were clarified. The crystalline phases of Bi4B2O9, Bi3B5O12, BiBO3, Sm x Bi1− x BO3, and SmB3O6 were formed through the usual crystallization in an electric furnace. The crystallized glasses consisting of BiBO3 and Sm x Bi1− x BO3 showed SH generations. The formation of the nonlinear optical BiB3O6 phase was not confirmed. The formation (writing) region of crystal lines consisting of Sm x Bi1− x BO3 by YAG laser irradiation was determined, in which Sm2O3 contents were∼10 mol%. The present study demonstrates that Sm2O3–Bi2O3–B2O3 glasses are promising materials for optical functional applications.  相似文献   

16.
The free energy change for the reaction RuO2( s )+4Cu( s ) = 2Cu2O( s )+Ru( s ) was determined from 600° to 1000°C from emf measurements on a solid oxide galvanic cell using a stabilized ZrO2 electrolyte. The cell was designed to minimize the reduction of RuO2 by the gas phase. The results were used to develop an equation for the standard molar free energy of formation of RuO2:
The standard molar enthalpy and entropy of formation of RuO2 at 298°K were calculated to be −72,430 ±200 cal/mol and –40.44±0.2 eu, respectively, using the available heat capacity data. The absolute entropy of RuO2 at 298°K was calculated to be 15.46±0.2 eu.  相似文献   

17.
Ba6−3 x Nd8+2 x Ti18O54 ceramic powders were synthesized by the modified Pechini method using ethylenediaminetetraacetic acid (EDTA) as a chelating agent. A purplish red, molecular-level, homogeneously mixed gel was prepared, and transferred into a porous resin intermediate through charring. Single-phase and well-crystallized Ba6−3 x Nd8+2 x Ti18O54 powders were obtained from pulverized resin at a temperature of 900°C for 3 h, without formation of any intermediate phases. Meanwhile, the molar ratio of EDTA to total metal cation concentration had a significant influence on the crystallization behavior of Ba6−3 x Nd8+2 x Ti18O54. The Ba6−3 x Nd8+2 x Ti18O54 ( x = 2/3) ceramics prepared via EDTA precursor have excellent microwave dielectric characteristics: ɛ= 87, Qf = 8710 GHz.  相似文献   

18.
Porosity, grain growth, phase composition, and microstructural defects were studied in sintered YBa2 (Cu1−x)3O7−x ceramics for x values up to 0.3. The porosity of the samples, related to the sintering mechanism, was independent of iron concentration. A linear dependence of the grain size with the inverse of the iron concentration was found, strongly suggesting grain boundary segregation of iron. The solubility limit was estimated to be x = 0.18 at 950°C in O2. Beyond this limit, a new microstructural component was found consisting of YBa2(Cu1−xFex)3O7−δ, YBaCuFeO5 and Ba(Cu,Fe)O2. The transition from an orthorhombic twin to an orthorhombic tweed phase and a tetragonal phase was detected by polarized light microscopy.  相似文献   

19.
An investigation of the properties of high-purity (>99 wt%) tantalum tungstates (Ta22W4O67, Ta, WO8, and Ta16W18O94) included determination of density (bulk and theoretical), refined lattice constants, maximum use temperatures, micro-hardness, heat capacity, thermal expansion (contraction) and diffusivity, calculated thermal conductivity, and electrical resistivity. Usable to ∼ 1700 K in air or inert atmospheres, these tantalum tungstates have theoretical densities of 7.3 to 8.5 g/cm3, are relatively soft (120 to 655 kg/mm2 hardnesses), and are electrical insulators (6× 103 to 2× 108Ω.cm resistivities). The distinguishing properties of the materials are their thermal expansion (average CTE values from + 0.6×10−8/K to −5.1× 10−6/K at 293 to 1273 K), thermal expansion hysteresis with minimal observable microcracking, and thermal diffusivity  相似文献   

20.
The effects of substituting Nb5+ with Ta5+ on the microwave dielectric properties of the ZnNb2O6 ceramics were investigated in this study. The forming of Zn(Nb1− x Ta x )2O6 ( x =0–0.09) solid solution was confirmed by the measured lattice parameters and the EDX analysis. By increasing x , not only could the Q × f of the Zn(Nb1− x Ta x )2O6 ( x =0–0.09) solid solution be tremendously boosted from 83 600 GHz at x =0 to a maximum 152 000 GHz at x =0.05, the highest ɛr∼24.6 could also be achieved simultaneously. It was mainly due to the uniform grain morphology and the highest relative density of the specimen. A fine combination of microwave dielectric properties (ɛr∼24.6, Q × f ∼152 000 GHz at 8.83 GHz, τf∼–71.1 ppm/°C) was achieved for Zn(Nb0.95Ta0.05)2O6 solid solution sintered at 1175°C for 2 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号