首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 152 毫秒
1.
 研究了某厂冶炼20CrMnTiH钢所用精炼渣的成分变化对钢液中w(T[O])与夹杂物成分的影响。基于Factsage软件探讨了精炼渣成分变化对钢液中w(T[O])的影响机制,指出精炼渣碱度R、w(CaO)/w(Al2O3)以及MI指数是通过改变渣中的Al2O3活度与CaO活度,提高精炼渣的“Al2O3”容量,以达到降低w(T[O])的目的,并在此基础上提出了适合冶炼20CrMnTiH钢的精炼渣系成分(质量分数):CaO 50%~55%,Al2O3 30%~35%,SiO2 6%~8%,MgO 5%~8%,其他不超过3%。通过工业试验发现,使用此渣系后铸坯中的w(T[O])降至10×10-6。  相似文献   

2.
程子建  郭靖  程树森 《钢铁》2012,47(10):45-51
 利用热力学计算软件FactSage确定了精炼渣中MgO质量分数合理范围为4%~8%,以6%最佳。由工业取样结果结合FactSage分析了1873K时SiO2-CaO-Al2O3-6%MgO准三元系液相区及CaO饱和的固液两相区渣-钢平衡。结果表明:高碱度高w(CaO)/w(Al2O3)(C/A)精炼渣有利于钢液的低氧低硫和低硅控制,但并非造得越“白”越好,相反过高的CaO对脱氧和硅含量控制不利。通过钢渣平衡分析得到了酒钢SPCC精炼渣优化成分范围(质量分数)为:CaO为50%~55%,Al2O3为30%~36%,SiO2为1%~6%,MgO为4%~8%,6%为最佳,碱度为9.0~14.0,w(CaO)/w(Al2O3)为1.5~1.8,实验室渣-钢平衡试验和工业生产结果均验证了优化的渣系较原渣系精炼效果更加优越,能够同时降低钢中总氧、硫和硅含量,也能有效控制钢中夹杂物的成分。  相似文献   

3.
根据热力学计算,渣系的碱度0.5~1.2,w(Al2O3)10%~25%时夹杂物控制在塑性区域。实验室实验表明,夹杂物中w(CaO+MgO)/w(SiO2)比值和w(Al2O3)随钢中w(Als)增加而增加,钢中w(Als)应低于6×10-6;当精炼渣碱度为0.8~1.0,w(Al2O3)为0%~10%时,在实验室能实现对钢中夹杂物的塑性化控制。  相似文献   

4.
吴辉强  林路  顾超 《中国冶金》2016,26(8):32-38
利用FactSage热力学软件计算了CaO-Al2O3-SiO2-5%MgO四元系的CaO、Al2O3等活度线,通过等活度线图着重探讨精炼渣碱度、w(CaO)/w(Al2O3)、MI指数(曼内斯曼指数)与Al2O3夹杂吸附能力的影响关系,最终得到适用于杭钢生产齿轮钢(8620H)的LF精炼渣系范围为:CaO质量分数为50%~55%,Al2O3质量分数为25%~30%,SiO2质量分数为10%~12%,MgO质量分数为5%~8%。并使用该渣系进行齿轮钢(8620H)工业试验,铸坯中全氧质量分数由0.001 5%降至0.001 0%,且铸坯中显微夹杂物尺寸也明显降低,由2.1降至1.5μm,每10kg铸坯中大型夹杂物质量分数由31.9下降到26.4mg,试验效果良好。  相似文献   

5.
 利用光学碱度计算了1873 K时CaO SiO2 Al2O3 MgO(10%)四元精炼渣系的硫容量,从理论上分析了精炼高级别管线钢超低硫控制的工艺条件,绘制出精炼渣硫容量、渣中硫、钢中溶解氧与钢中硫的关系图。分析了某钢厂LF VD高级别管线钢生产工艺,LF1(LF炉精炼初期)、LF2(LF炉精炼末期)和VD精炼渣的氧化能力w((MnO+FeO))分别为11.92%、2.00%和1.10%,精炼渣碱度分别为3.195、6.250和7.600,精炼渣的曼内斯曼指数M(R/w(Al2O3))分别为0.09、0.17和0.18,精炼渣硫容量CS′分别为0.010、0.022和0.023。钢中硫的质量分数从LF1的80×10-6,降低到LF2的(20~30)×10-6 ,并稳定在VD末期的20×10-6以下,与理论计算相符。  相似文献   

6.
针对SPCC钢的生产工艺情况,研究精炼渣与夹杂物相关性,分析精炼渣化学成分、w(CaO)/w(Al2O3)等对钢中夹杂物大小、形貌、类别等的影响。研究表明,精炼渣w(CaO)/w(Al2O3)为1.38~1.66时,钢中夹杂物分布较好,即大颗粒夹杂物比率较小,小颗粒夹杂物比率较大。  相似文献   

7.
对高氮钢电渣重熔前后夹杂物进行对比研究,分析不同渣系和自耗电极氧含量对重熔后夹杂物的影响。研究发现,不同渣系对电渣钢的洁净度影响很大,适当提高w(CaO)/w(Al2O3)可有效降低电渣锭中的夹杂物和全氧量。不同氧含量的自耗电极进行重熔后,电渣锭全氧量及夹杂物种类和组成成分差别不大,夹杂物成分中w(MnO)/w(MnO+Al2O3)≈0.23~0.32,自耗电极中的氧含量与电渣重熔的洁净度没有直接关系,采用氧质量分数为(40~100)×10-6的不同自耗电极,电渣重熔后氧质量分数始终保持在(20~30)×10-6。  相似文献   

8.
采用Factsage热力学软件和KTH模型分别绘制了CaO-SiO2-Al2O3渣系等CaO、等Al2 O3活度、等温度线图和等硫容量图,探讨了LF精炼渣碱度、ω(CaO)/ω(Al2O3)、曼内斯曼指数与渣系熔点、硫容量以及吸附Al2O3夹杂能力的关系,最终获得高洁净度铝镇静钢理论渣系目标成分:ω (CaO)=50%~55%,ω(Al2O3)=22 %~26%,ω(SiO2)=10%~12%,ω(MgO)=5%~8%.40Cr钢的现场试验证明应用该渣系铸坯ω(T.O)能够稳定控制在15×10-6以下,ω(S)平均达到90×10-6,洁净度达到了国内先进水平.  相似文献   

9.
贺庆  姚同路  杨利彬  刘浏 《炼钢》2013,29(1):19-23
针对某钢厂采用“BOF→LF→RH”工艺流程生产的高级别管线钢,通过金相、扫描电镜、能谱等手段分析了钢中夹杂物,并从热力学角度进行了研究.结果表明当钢中的w(Als)=0.025%,若钙处理时钢中w(CaO)>18×10-6,w(S)<0.011%,可较易地将Al2O3夹杂变性为低熔点的C12A7.研究后提出一系列工艺优化措施:强化转炉顶底复合吹炼工艺、改善吹氩站和LF的吹氩制度、调整精炼渣系使w(CaO)/w(SiO2)控制在4.5~6.0,w(CaO)/w(Al2O3)控制在1.7~1.9,最终钢水w(S)可控制在0.000 8%以下,氧化物和硫化物的夹杂物级别控制在1.0级以内.  相似文献   

10.
 为了研究LF-VD精炼工艺的脱硫效果,进行了9炉工业试验。通过对BOF-LF-VD和KR-BOF-LF-VD工艺冶炼中厚板钢中硫含量和炉渣成分的分析,研究了炉渣成分和工艺参数对脱硫的影响。结果表明,采用适宜的精炼渣系,通过LF-VD精炼能把钢中硫质量分数从转炉终点200×10-6左右脱至20×10-6以下;炉渣成分[w((MgO))]=4%~7%、[w((SiO2))]=7%~11%、[w((CaO))/[w((Al2O3))+w((SiO2))]]=1.62时,实现最高硫分配比接近500;VD精炼比LF精炼钢液搅拌强烈,能进一步脱硫。研究结果对优化中厚板炉外精炼脱硫工艺具有指导意义。  相似文献   

11.
摘要:无间隙原子钢(IF钢)对含铝夹杂物要求极为严格。为冶炼洁净IF钢,采用热力学软件FactSage 7.0对IF钢精炼渣系做了优化计算,并采取6组工业实验做验证,根据结果提出改进措施。实验中采取氧传感器、碳硫分析仪及ICP AES对钢和渣成分进行检测,并通过ASPEX自动扫描电子显微镜检测钢中夹杂物成分与数量。热力学计算及实验研究发现,转炉脱碳结束时钢液中碳质量分数宜控制在0.04%,转炉渣中FeO质量分数控制在149%以内,降低钢中[O]质量分数到470×10-6。精炼时控制补吹氧炉次比在64%以下,补吹量在17m3内,精炼渣中SiO2、MgO及TFe质量分数分别控制在6%~8%、6%和5%~10%,钙铝比控制在1.4~1.6时,钢中[O]质量分数可控制在10×10-6,且该精炼渣系对Al2O3有较好的吸附性。在确保精炼脱氧的同时,降低钢液二次氧化,达到IF钢洁净冶炼目的。  相似文献   

12.
李牧明  于会香  潘明  白皓 《钢铁》2019,54(6):37-42
 为了研究精炼渣对高锰钢中非金属夹杂物的影响,采用渣/钢平衡的试验方法研究了MgO SiO2 Al2O3 CaO系精炼渣对Fe xMn高锰钢(x=10%, 20%)中非金属夹杂物的影响。结果表明,无顶渣情况下,高锰钢中夹杂物主要为MnO类和MnO Al2O3类2类。加入精炼渣后,夹杂物类型发生了变化,主要有 MnO类、MnO SiO2类和 MnO Al2O3 MgO类3类,其中MnO SiO2类数量最多。采用ASPEX扫描电镜对夹杂物的平均成分进行分析,无顶渣时高锰钢中夹杂物的成分主要是MnO,质量分数在95%以上,并含有质量分数为4%左右的Al2O3。加入精炼渣后,夹杂物中MnO质量分数降低,SiO2质量分数显著增加,MgO质量分数增加。热力学计算结果表明,加入精炼渣后,渣/钢间反应4[Al]+3(SiO2)=2(Al2O3)+3[Si]和2[Mn]+(SiO2)=2(MnO)+[Si]的吉布斯自由能均小于零,这说明在本试验条件下,钢液中的[Al]和[Mn]会还原渣中SiO2,生成的[Si]进入钢液,进而与钢液中的[O]结合,导致夹杂物中SiO2增加。  相似文献   

13.
陈天明 《钢铁》2011,46(4):26-30
 利用热力学软件计算了齿轮钢氧含量与夹杂物成分的关系、夹杂物转变条件。结果表明,超低氧20 CrMoH钢中具有较高塑性的非金属夹杂物成分为:SiO2 0%~10%、Al2O3 22%~55%、CaO 42%~60%、MgO 5%~10%,与之平衡的时钢液中铝含量在0.020%左右,钙含量>0.7×10-6,氧含量在0.0005%左右;选择组成为CaO>40%、Al2O3≤37%、MgO10%、(%CaO+%MgO)/%SiO2为10、SiO2含量尽量低的渣系,钢中Al2O3、MgO•Al2O3夹杂物可转变为低熔点的钙铝酸盐。上述结果在工业试验中得到了验证。  相似文献   

14.
杨俊  王新华 《钢铁》2011,46(7):26-31
 对超低氧试验钢精炼过程中镁铝尖晶石的形成机制和生成热力学计算分析表明:1873K时,MgO-Al2O3二元系夹杂物中MgO的质量分数超过17%时就能生成镁铝尖晶石;采用高碱度、w((CaO))/w((Al2O3))≈1、强还原性精炼顶渣对铝终脱氧钢液进行LF精炼时,在LF精炼中前期就实现Al2O3向MgO·Al2O3尖晶石的转变;钢液中的镁则是实现Al2O3向MgO·Al2O3尖晶石转变的中介和桥梁。而钢中镁含量是由酸溶铝控制的。因此,保持钢液中足够的铝含量是镁铝尖晶石生成的前提。生产过程中,当钢液的w([Al])达到0.03%时,w([Mg])只需要1.32×10-7以上就能生成MgO·Al2O3尖晶石。  相似文献   

15.
 为了实现LF热态钢渣的循环利用,对目前武钢LF热态钢渣两次循环利用工艺中精炼渣的组成、脱硫能力及吸收夹杂能力的变化进行了分析研究。结果表明,LF热态钢渣循环利用后钢水的脱硫率可以达到90%以上,精炼终点w([S])可以达到0.001%的水平;相对于未循环工艺,钢中w(T[O])减少17.50×10-6,w([N])减少17.00×10-6,夹杂物数量减少4.47个/mm2。根据两次热循环利用结果得出:通过控制回收的渣量及补加石灰的量,可保证循环后初始炉渣中的w((S))小于0.20%,终渣碱度(w(CaO)/w(SiO2))在12.00~20.00范围,w(CaO)/w(Al2O3)为1.75~2.00,从而使精炼渣的脱硫效率、w((S))/w([S])不受循环次数的限制。  相似文献   

16.
低碳低硅铝镇静钢的夹杂物控制工艺计算与分析   总被引:2,自引:0,他引:2  
刘海强 《河南冶金》2010,18(3):24-26
围绕低碳低硅铝镇静钢的可浇性问题,以大量的生产数据及现场实际生产状况为计算依据,对出钢终点[O]、夹杂物数量、精炼终渣渣量等进行了工艺计算分析。分析认为:在保证转炉出钢[C]小于0.05%的同时终点[O]控制在600×10-6~900×10-6较好,与之对应的精炼终渣渣量控制15 kg/t钢~18 kg/t钢为宜,渣中铝脱氧产物约合3.25 kg/t钢~3.88 kg/t钢;此时可将低碳低硅铝镇静钢的精炼终渣渣系控制在较佳的范围,渣中w(Al2O3)在18%~25%,碱度R(CaO/SiO2)在4.5~5.5,对脱除钢中夹杂物、控制钢水回硅、保证钢水可浇性意义重大。  相似文献   

17.
为了优化55SiCrA弹簧钢中夹杂物的组成和形态,采用热力学软件Factsage分别研究了CaO、SiO_2含量对CaO-SiO_2-Al_2O_3-MgO与CaO-SiO_2-Al_2O_3-MnO系相图低熔点区域面积的影响,研究结果表明:随着CaO和SiO_2含量的增加,CaO-SiO_2-Al_2O_3-MnO系相图低熔点区域面积分数逐步增大;在CaO-SiO_2-Al_2O_3-MgO系中,当CaO的质量分数为40%,SiO_2的质量分数为50%时,对应相图的低熔点区域面积最大。同时,研究了不同碱度的精炼渣对钢样中夹杂物的影响,结果表明:当精炼渣的Al_2O_3含量相同时,随着精炼渣碱度的增大,夹杂物中Al_2O_3的含量不断增加,其成分逐渐偏离低熔点区域。当精炼渣中Al_2O_3的质量分数为8%,碱度为1.2时,可得到低熔点的塑性夹杂物,形貌多为球形,尺寸在5μm以下。  相似文献   

18.
摘要:CF8A不锈钢由于具有良好的耐蚀性和强韧性等优点,被用于铸造压水堆核电站主回路系统中循环泵的泵体,但铸件常出现表面探伤不合问题。通过对铸件表面探伤不合区域取样,并跟踪冶炼全流程取样,利用扫描电镜、能谱仪观察缺陷类型和夹杂物演变行为;结合Factsage软件计算,研究缺陷成因及控制方法。CF8A不锈钢冶炼过程中,AOD出钢前夹杂物主要为尖晶石;Ca处理后夹杂物主要为液态或双相CaO-Al2O3-MgO(-SiO2)夹杂;浇钢结束前,钢液中出现尖晶石和氧化铝夹杂;凝固过程中富氧化铝夹杂在铸件表面聚合造成铸件表面探伤不合。因此,控制钢液中Al元素的质量分数在0.01%左右,钙元素的质量分数在20×10-6~30×10-6左右,合理控制炉渣中SiO2和Al2O3的含量,可以减少氧化铝类夹杂的生成,提高铸件表面探伤合格率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号