首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Tantalum oxide (Ta 2 O 5 ) films and Al/Ta 2 O 5 /Si MOS capacitors were prepared at various powers by ultraviolet photo-inducing hot filament chemical vapour deposition (HFCVD). Effects of ultraviolet light powers on the structure and electrical properties of Ta 2 O 5 thin films were studied using X-ray diffraction (XRD) and atomic force microscopy (AFM). The dielectric constant, leakage current density and breakdown electric field of the samples were studied by the capacitance–voltage (C–V) and current–voltage (I–V) measurements of the Al/Ta 2 O 5 /Si MOS capacitors. Results show that the Ta 2 O 5 thin films grown without inducement of UV light belong to amorphous phase, whereas the samples grown with inducement of UV-light belong to δ-Ta 2 O 5 phase. The dielectric constant and leakage current density of the Ta 2 O 5 thin films increase with increasing powers of the UV- lamps. Effects of UV- lamp powers on the structural and electrical properties were discussed.  相似文献   

2.
In the present investigation, we report chemical synthesis of hydrous tin oxide (SnO 2 :H 2 O) thin films by successive ionic layer adsorption and reaction (SILAR) method at room temperature ( \thicksim \thicksim 300 K). The films are characterized for their structural and surface morphological properties. The formation of nanocrystalline SnO 2 with porous and agglomerated particle morphology is revealed from X-ray diffraction (XRD) and scanning electron microscopy (SEM) studies, respectively. The Fourier transform infrared spectroscopy (FTIR) study confirmed the formation of Sn–O phase and hydrous nature of the deposited film. Static water contact angle studies showed the hydrophilic nature of SnO 2 :H 2 O thin film. Electrical resistivity showed the semiconducting behaviour with room temperature electrical resistivity of 10 5  W\boldsymbol\Omega cm. The electrochemical properties studied in 0·5 M Na 2 SO 4 electrolyte showed a specific capacitance of 25 F g  − 1 at 5 mVs  − 1 scan rate.  相似文献   

3.
A.c. measurements were preformed on bulk samples of Ca1−x Sr x TiO3 (CST) perovskites with x = 0, 0.1 and 0.5 as a function of temperature range 300–450 K and frequency range 103–105 Hz . The experimental results indicate that the a.c. conductivity σa.c.(ω), dielectric constant ε′ and dielectric loss ε′′ depend on the temperature and frequency. The a.c. conductivity as a function of frequency is well described by a power law Aω S with s the frequency exponent. The obtained values of s > 1 decrease with increasing temperature. The present results are compared to the principal theories that describe the universal dielectric response (UDR) behavior.  相似文献   

4.
Cadmium thiogallate CdGa2S4 thin films were prepared using a conventional thermal evaporation technique. The dark electrical resistivity calculations were carried out at different elevated temperatures in the range 303–423 K and in thickness range 235–457 nm. The ac conductivity and dielectric properties of CdGa2S4 film with thickness 457 nm has been studied as a function of temperature in the range from 303 to 383 K and in frequency range from 174 Hz to 1.4 MHz. The experimental results indicate that σac(ω) is proportional to ω s and s ranges from 0.674 to 0.804. It was found that s increases by increasing temperature. The results obtained are discussed in terms of the non overlapping small polaron tunneling model. The dielectric constant (ε′) and dielectric loss (ε″) were found to be decreased by increasing frequency and increased by increasing temperature. The maximum barrier height (W m) was estimated from the analysis of the dielectric loss (ε″) according to Giuntini’s equation. Its value for the as-deposited films was found to be 0.294 eV.  相似文献   

5.
The electrical properties of double perovskite Ho2NiTiO6 (HNT) are investigated by impedance spectroscopy in the temperature range 30–420 °C and frequency range 100 Hz to 1 MHz. The X-ray diffraction analysis reveals that the compound crystallizes in monoclinic phase. The imaginary part of impedance (Z″) as a function of frequency shows Debye type relaxation. The frequency dependence of Z″ peak is found to obey an Arrhenius law with an activation energy of 0.129 eV. Impedance data presented in the Nyquist plot (Z″ vs. Z′) are used to identify an equivalent circuit and to know the bulk and interface contributions. The complex impedance analysis of HNT exhibits the appearance of both the grain and grain-boundary contribution. The results of bulk ac conductivity as a function of temperature and frequency are presented. The activation energy (0.129 eV), calculated from the slope of log τ versus 103/T plot, is found to be the nearly same as calculated (0.130 eV) from dc conductivity. The frequency dependent conductivity spectra obey the power law.  相似文献   

6.
Electrical impedance technique was employed to investigate the electrical properties of ethylene-carbon monoxide/propylene-carbon monoxide terpolymer (EPEC-69). The measurements were performed in the frequency range 0.1–10Hz and in the temperature range 30–110 °C. The results reveal that the dielectric constant, loss factor, modulus, and ac conductivity are dependent of frequency and temperature. A Debye relaxation peak was detected in the plot of Z″ versus frequency where the activation energy was determined and found to be 1.26 eV. When the surface phenomenon effects were separated using the imaginary part of the complex admittance a second dielectric dispersion was observed in the low frequency region. Two models were proposed from the impedance measurements depending on temperature range.  相似文献   

7.
Solid-state reaction synthesised K2Ti6O13 lead-free ceramic was characterized using XRD, SEM, and X-band EPR, at room temperature. EPR-spectra showed the presence of ( \textFe\textTi - V\textO ·· ) \left( {{\text{Fe}}_{\text{Ti}}^{\prime } - V_{\text{O}}^{ \bullet \bullet } } \right) defect associate dipoles, in orthorhombic phase, responsible for the broadening of the dielectric anomaly identified in the ε r (T) plots at T C  ~ 300 °C. This anomaly resembled a ferroelectric–paraelectric type phase transition following Curie–Weiss type trend. Besides, dielectric loss mechanism jointly represented electrical conduction, dipole orientation, and space charge polarization.  相似文献   

8.
Pure and Zr-substituted CaCu3(Ti1−x Zr x )4O12 (x = 0, 0.01, 0.02, 0.03) ceramics were prepared by the Pechini method. X-ray powder diffraction analysis indicated the formation of single-phase compound, and all the diffraction peaks were completely indexed by the body-centered cubic perovskite-related structure. The effects of Zr4+ ion substituting partially Ti4+ ion on the dielectric properties were investigated in frequency range between 100 Hz and 1 GHz. The low frequency (f ≤ 105 Hz) dielectric constant decreases with Zr substitution and the high frequency (f ≥ 107 Hz) dielectric constant is unchanged. Interestingly, a low-frequency relaxation was observed at room temperature through Zr substitution. The observed dielectric properties in Zr-substituted samples were discussed using the internal barrier layer capacitor model. A corresponding equivalent circuit was adopted to explain the dielectric dispersion. The characteristic frequency of low-frequency relaxation rises due to the decrease of the resistivity of grain boundary with Zr substitution, which is likely responsible for the large low-frequency response at room temperature.  相似文献   

9.
The electrochromic (EC) NiO x H y films were fabricated through a facile sol–gel method. The formation of high quality NiO x H y films came from adding the xerogel back into the sol and prolonging the annealing time at gradually increasing temperature up to 250 °C. Scanning electron microscopy and atomic force microscopy characterizations indicated films were compact, homogenous, and smooth. Glance angle X-ray diffraction investigation testified NiO x H y films were of poor crystallization. The Fourier transform infrared, and thermogravimetry and differential thermal analysis showed that films contained the mixture of NiO, Ni(OH)2, NiOOH, water, and organic substance. With the increasing of the xerogel ratio, the optical absorbance and reflectance of films had larger differences between the colored and bleached state, respectively. The film with the xerogel ratio of 1:5 showed excellent EC properties with a transmittance contrast as high as 60.88% at λ = 560 nm, which was higher than other sol–gel nickel oxide films reported.  相似文献   

10.
CaCu3Ti4O12 (CCTO) was synthesized and sintered by microwave processing at 2·45 GHz, 1·1 kW. The optimum calcination temperature using microwave heating was determined to be 950°C for 20 min to obtain cubic CCTO powders. The microwave processed powders were sintered to 94% density at 1000°C/60 min. The microstructural studies carried out on these ceramics revealed the grain size to be in the range 1–7 μm. The dielectric constants for the microwave sintered (1000°C/60 min) ceramics were found to vary from 11000–7700 in the 100 Hz–00 kHz frequency range. Interestingly the dielectric loss had lower values than those sintered by conventional sintering routes and decreases with increase in frequency.  相似文献   

11.
Semi-organic nonlinear optical material, L-lysine L-lysinium dichloride nitrate (2C6H15N2O2+_{2}^{+} · H +  · NO3-_{3}^{-} · 2Cl − ) was synthesized at room temperature. Single crystals of L-LLDN were grown by slow cooling solution growth technique. The grown crystal was confirmed by powder X-ray diffraction analysis. The crystalline perfection of the grown single crystal was characterized by high-resolution X-ray diffraction (HRXRD) studies. The cut-off wavelength was determined by UV-vis transmission spectral analysis. The frequency doubling of the grown crystal was confirmed by powder second harmonic generation (SHG) measurement. The refractive index and birefringence of the crystal were determined using He–Ne laser source. Mechanical property of the crystal was determined by Vickers hardness tester. The frequency and temperature dependence of dielectric constant (ε r), dielectric loss (tan δ) and a.c. conductivity (σ ac) were also measured.  相似文献   

12.
Magnetic and dielectric properties of the double perovskite compounds of the type R 2CuTiO6 (RCTO, where R=Y, La, Pr and Nd) has been studied. Y2CuTiO6 (YCTO) crystallizes in a hexagonal unit cell, whereas the other three compounds form into orthorhombic structure. All four compounds show paramagnetic behavior down to 5 K. The dielectric studies show moderate dielectric constant (ε′) and very small dielectric loss (tan δ) for YCTO. The orthorhombic members of RCTO compounds exhibit moderate values of ε′ and tan δ. The dielectric properties are presented and discussed here in the light of the influence of structure and rare-earth ions on the physical properties of RCTO compounds.  相似文献   

13.
The possibility of creating a new scheme of a laser-pumped quantum magnetometric device based on a double-beam M X magnetometer is considered. The proposed system ensures the simultaneous measurement of the modulus of the Earth’s magnetic field vector (with an absolute accuracy of 0.02 nT) and two angles of deviation of this vector with an absolute accuracy and sensitivity of not worse than 0.4″ (0.1 nT) at a measurement time of τ = 1 s. In contrast to the known analogous systems, the proposed scheme does not require generating additional magnetic fields.  相似文献   

14.
Harrison’s first principle pseudopotential (HFPP) technique in conjunction with BCS theory and McMillan’s formalism has been used for the investigation of superconducting state parameters viz., Coulomb pseudopotential μ , electron–phonon coupling strength λ, SC transition temperature T C , interaction strength N 0 V, semi band gap Δ, energy or mass renormalization parameter Z 0 and isotope effect exponent δ. The ground state properties of MgB2 have also been calculated employing full-potential linearized augmented plane wave (FLAPW) method. This enables us to estimate the equilibrium values of bulk modulus and its pressure derivative through optimization of the crystal structure of the system. We have also described the total density of state (DOS) and the partial DOS (PDOS) around the Fermi energy.  相似文献   

15.
Bismuth-layered compound Ca0.15Sr1.85Bi4−xNdxTi5O18 (CSBNT, x = 0–0.25) ferroelectric ceramics samples were prepared by solid-state reaction method. The effects of Nd3+ doping on their ferroelectric and dielectric properties were investigated. The remnant polarization Pr of CSBNT ceramics increases at beginning then decreases with increasing of Nd3+ doping level, and a maximum Pr value of 9.6 μC/cm2 at x = 0.05 was detected with a coercive field Ec = 80.2 kV/cm. Nd3+ dopant not only decreases the Curie temperature linearly, but also the dielectric constant (εr) and dielectric loss tangent (tan δ). The magnitudes of εr and tan δ at the frequency of 100 kHz are estimated to be 164 and 0.0083 at room temperature, respectively.  相似文献   

16.
Monophasic CaNaBi2Nb3O12 powders were synthesized via the conventional solid-state reaction route. Rietveld refinement of the X-ray powder diffraction (XRD) data and selected area electron diffraction (SAED) studies confirmed the phase to be a three-layer Aurivillius oxide associated with an orthorhombic B2cb space group. The dielectric properties of the ceramics have been studied in the 300–800 K temperature range at various frequencies (1 kHz to 1 MHz). A dielectric anomaly was observed at 676 K for all the frequencies corresponding to the ferroelectric to paraelectric phase transition as it was also corroborated by the high temperature X-ray diffraction studies. The incidence of the polarization–electric field (P vs. E) hysteresis loop demonstrated CaNaBi2Nb3O12 to be ferroelectric.  相似文献   

17.
Ba5Nb4O15 powders were synthesized by molten-salt method in NaCl–KCl flux at a low temperature of 650–900 °C for 2 h, which is lower than that of the conventional solid-state reaction. This simple process involved mixing of the raw materials and salts in a certain proportion. Subsequent calcination of the mixtures led to Ba5Nb4O15 powders at 650–900 °C. XRD and SEM techniques were used to characterize the phase and morphology of the fabricated Ba5Nb4O15 powders, respectively. After sintering at 1,300 °C for 2 h, the densified Ba5Nb4O15 ceramics with good microwave dielectric properties of εr = 39.2, Q × f approximated as 27,200 GHz and τ f  = 72 ppm/°C have been obtained.  相似文献   

18.
CeO2-doped K0.5Na0.5NbO3 lead-free piezoelectric ceramics have been fabricated by a conventional ceramic fabrication technique. The ceramics retain the orthorhombic perovskite structure at low doping levels (<1 mol.%). Our results also demonstrate that the Ce-doping can suppress the grain growth, promote the densification, decrease the ferroelectric–paraelectric phase transition temperature (T C), and improve the dielectric and piezoelectric properties. For the ceramic doped with 0.75 mol.% CeO2, the dielectric and piezoelectric properties become optimum: piezoelectric coefficient d 33 = 130 pC/N, planar electromechanical coupling coefficient k p = 0.38, relative permittivity εr = 820, and loss tangent tanδ = 3%.  相似文献   

19.
K0.5Na0.5NbO3x ZnO (KNN–xZn) lead-free ceramics have been prepared using the conventional sintering technique and the effects of ZnO addition on the phase structure and piezoelectric properties of the ceramics have been studied. Our results reveal that a small amount of ZnO can improve the density of the ceramics effectively. Because of the high density and ZnO doping effects, the piezoelectric and dielectric properties of the ceramics are improved considerably. The good piezoelectric and dielectric properties of d 33 = 114 pC/N, k p = 0.36, ε r = 395, and Q m = 68 were obtained for the KNN ceramics doped with 1 mol% ZnO. Therefore, the KNN-1.0 mol%Zn ceramics is a good candidate for lead-free piezoelectric application.  相似文献   

20.
Ho3Fe5O12 ceramics were fabricated by the solid-state reaction method. The results revealed an increase of the grain size, dielectric constant, and dielectric loss, while a decrease of the remnant magnetization and coercive field with increasing sintering temperature. A dielectric relaxation behavior was observed, which might be associated with the charge carrier hopping between Fe2+ and Fe3+. A colecole fitting to loss peaks revealed a dependence of the activation energy and the broaden factor on the relative density of the samples. Furthermore, at appropriate frequencies, the 1250 °C-sintered samples showed high dielectric constant, low dispassion, and good temperature stability around room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号