首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gas velocity measurements were conducted in the doorway of an enclosure containing a natural gas fire. Two independent measurement techniques, Stereoscopic Particle Image Velocimetry (SPIV) and bi-directional impact-pressure probes, were utilized for comparison – the first such comparison for a fire-induced flow in a full-scale structural fire. Gas velocities inferred from the bi-directional probe measurements were consistently greater than SPIV measurements in a region of the flow between the floor and the flow interface. The comparison revealed that a measurement bias exists in the bi-directional probe technique. Estimates of the relative magnitude of the bias were inferred from the results.  相似文献   

2.
A ubiquitous source of uncertainty in fire modeling is specifying the proper heat release rate (HRR) for the fuel packages of interest. An inverse HRR calculation method is presented to determine an inverse HRR solution that satisfies measured temperature data. The methodology uses a predictor-corrected method and the Consolidated Model of Fire and Smoke Transport (CFAST) zone model to calculate hot gas layer (HGL) temperatures in single compartment configurations. The inverse method runs at super-real-time speeds while calculating an inverse HRR solution that reasonably matches the original HRR curve. Examples of the inverse method are demonstrated by using a multiple step HRR case, complex HRR curves, experimental temperature data with a constant HRR, and a case with an experimentally measured HRR. In principle, the methodology can be applied using any reasonably accurate fire model to invert for the HRR.  相似文献   

3.
The rail based urban transport system is being developed for national capital of India, New Delhi. The smoke control using ventilation in case of fire inside the tunnel, similar to Delhi Metro corridor has been investigated using computational fluid dynamics technique. A section of tunnel having dimensions 400 m long, 5.5 m wide and 6 m high is considered for simulation. The analysis has been carried out by assuming a variable fire source with a peak heat release rate (HRR) of 16 MW, located at the center of the tunnel. Ventilation ducts are located in the ceiling near the tunnel portals and are inclined at 10 degrees to the plane of the ceiling through which fans discharge air. The influence of the fire HRR curve slope on the smoke flow dynamics in a realistic tunnel model fitted with jet injection type longitudinal ventilation system has been investigated. In case of fire two cases are studied: (1) fans activated immediately after detection, (2) fans activated at delayed times to take into account the response time for the fans to achieve its maximum speed. The velocity of supply and exhaust fans necessary to remove smoke in 30 s from the upstream direction is determined. The velocities of fan required to produce desired critical velocity in the longitudinal direction for different HRR of fire is predicted.  相似文献   

4.
Building fire sensors are capable of supplying substantially more information to the fire service than just the simple detection of a possible fire. Nelson, in 1984, recognized the importance of tying all the building sensors to a smart fire panel [1]. In order to accomplish a smart fire panel configuration such as envisioned by Nelson, algorithms must be developed that convert the analog/digital signals received from sensors to the heat release rate (HRR) of the fire. Once the HRR of the fire is known, a multiroom zone fire model can be used to determine smoke layers and temperatures in the other rooms of the building. This information can then be sent to the fire service providing it with an approximate overview of the fire scenario in the building.This paper will describe a ceiling jet algorithm that is being developed to predict the heat release rate (HRR) of a fire using signals from smoke and gas sensors. The prediction of this algorithm will be compared with experiments. In addition, an example of the predictions from a sensor-driven fire model, SDFM, using signals from heat sensors, will be compared with measurements from a full-scale, two-story, flashover townhouse fire.  相似文献   

5.
临界风速可有效控制烟气蔓延,是隧道防灾通风重要参数。为分析隧道长度对临界风速的影响,采用量纲分析法构建临界风速与隧道长度关系公式,并分别在5 MW和30 MW火源热释放速率下,对不同长度隧道的火灾进行数值模拟以量化研究隧道长度对临界风速的影响。结果表明,隧道长度对临界风速具有影响,且不同火源释放速率时影响也有所不同:无量纲火源热释放速率小于0.15时,临界风速随隧道长度增大呈现1/41次方增长关系;无量纲火源热释放速率高于0.15时,临界风速随隧道长度增大呈现1/25次方增长关系。进而建立了考虑隧道长度的无量纲临界风速计算公式。  相似文献   

6.
The performance of mixture fraction models FDS4 and FDS5 is investigated under different global equivalence ratios (GER). Predictions of heat release rate (HRR), upper-layer temperature, and CO yield are compared with measurements considering their sensitivities to the lower limit of fuel, mixing time scale, and turbulence model constants. When using FDS4, the inclusion of an extinction model can result in significant variations in both total and volumetric HRR prediction. When using FDS5, the mixing model constant has significant effects on volumetric HRR prediction. At low GER (<0.23), the prediction of upper-layer temperature shows dependency on both the lower fuel limit and the mixing model constant, but the predicted temperature is always lower than measured temperature, with deviations in excess of 30%. At higher GER (0.53<GER<0.81), the upper-layer temperature prediction shows significant dependency on the mixing model constant but can be over-predicted, with deviations up to 24%. The variations of CO yield prediction with lower fuel limit or with the mixing model constant show an opposite trend to that of upper-layer temperature. Furthermore, the prediction of CO yield shows a much greater dependency on the Smagorinsky constant and on the turbulent Schmidt number than do those of HRR and upper-layer temperature.  相似文献   

7.
8.
计算地铁区间列车火灾人员所需安全疏散时间,与模拟所得可用安全疏散时间对比,确定区间人员疏散策略及通风临界时间。研究表明:地铁列车外部中间位置着火停靠在区间,火源功率分别为5、7.5、10 MW,需启动纵向通风排烟系统,组织人员向上风向疏散。火源功率为5 MW,纵向通风风速为2.0 m/s时,150~180 s 开始通风可保证人员安全疏散;火源功率为7.5、10 MW,纵向通风风速分别为2.4、2.6 m/s 时,120~180 s 开始通风可保证人员安全疏散。风机由静止转换为事故工况的通风临界时间为120 s,由运转转换为事故工况的通风临界时间为90 s。  相似文献   

9.
Usually, during a fire inside a tunnel, the average heat release rate (HRR) is estimated according to the type of vehicle. Frequently, the overall HRR is considered, however it is also necessary to know its time evolution to design real time systems, particularly ventilation, which respond to fire events or signals as fast as possible. Nowadays, there is not a well established and generally accepted procedure to know the power liberated at each instant of time inside an operational tunnel. That procedure could help in taking the correct actions to adapt the tunnel ventilation in order to diminish the effects of the fire and the smoke. This work shows a method to calculate the heat release rate using sensors that can be installed inside an operational road tunnel. Besides, the location of the fire could also be calculated accurately and quickly. To achieve the previous purposes, a stationary database that depends on HRR, its location, and the ventilation speed is calculated with CFD programs; the data are compared with temperatures measured by the sensors located inside the tunnel. The program used to generate the database is the simplified model UPMTUNNEL. The predictions of the model are compared with the results of calculations carried out using the general purpose code FLUENT, and with measurements done in a tunnel with a real fire, produced with a fuel tray.  相似文献   

10.
This paper adopts a series of 1:20 scale tunnel experiments based on a series of large-scale tunnel experiments to study the influence of forced ventilation on fires. The small-scale tunnel has dimensions of 0.365 m (W)×0.26 m (H)×11.9 m (L). Cribs using a wood-based material provide the fuel source and forced ventilation velocities from 0.23 to 1.90 m/s are used. From the study of the measured heat release rate (HRR) and mass loss rate data it is found that the forced air velocity affects the fire spread rate and burning efficiency and further affects peak HRR values at different air velocities. A simple model to describe these influences is proposed. This model is used to reproduce the enhancement of peak HRR for cribs with different porosity factors noted by Ingason [1] and to assess the effects of using different length of cribs on peak HRR. The results from these analyses suggest that different porosity fuels result different involvement of burning surface area and result different changes in peak HRR. However, no significant difference to the enhancement on fire size is found when the burning surface area is similar. It is also found that the trend in the enhancement on fire size by using sufficiently long crib and available ventilation conditions matches the predictions of Carvel and Beard [2] for two-lane tunnel heavy goods vehicle fires.  相似文献   

11.
《Building and Environment》1988,23(3):203-213
Ventilation is a time-varying phenomenon which may be quantified using statistical methods and tracer gas techniques. For example, using spectral analysis of the concentration history of SF6 introduced in the ventilation air, the major time scales for ventilation flows in rooms can be estimated. Experimental studies with a simple, PC-based data acquisition system in occupied laboratories in Waterloo, Ontario produced data records of contaminant concentration of up to 5 day's length with corresponding velocity records of ventilation and infiltration flows. Corresponding length scales can be estimated from spatial correlations of records from paired velocity probes.  相似文献   

12.
Model scale fire tests were performed in tunnels with varying tunnel widths and heights in order to study the effect of tunnel cross-section and ventilation velocity on the heat release rate (HRR) for both liquid pool fires and solid fuel fires. The results showed that for well ventilated heptane pool fires, the tunnel width nearly has no influence on the HRR whilst a lower tunnel height clearly increases the HRR. For well ventilated solid fuel fires, the HRR increases by approximately 25% relative to a free burn test but the HRR is not sensitive to either tunnel width, tunnel height or ventilation velocity. For solid fuel fires that were not well ventilated, the HRRs could be less than those in free burn laboratory tests. In the case of ventilation controlled fires the HRRs approximately lie at the same level as for cases with natural ventilation.  相似文献   

13.
Numerical simulations of ceiling jets under unconfined, inclined ceilings were conducted with the open-source code FireFOAM. A range of ceiling inclinations, 0–30° was considered with a 14 kW convective heat release rate (HRR) heptane fire used as the plume source, and the ceiling mid-point clearance from the top of the 0.228 m diameter burner kept fixed at 0.89 m. The predicted temperature and velocity in the developing ceiling jets were compared against the experimental data and empirical correlations. Temperature and velocity predictions on the elevated side of the ceiling are in general agreement with experimental data. Flow reversal in the lower side of the ceiling was predicted with good confidence, and comparison with experimental data was found to be reasonable. Following existing convention in the literature, the predicted results were non-dimensionalized using the convective HRR, ceiling height and radial distance from the ceiling mid-point. Comparison of the non-dimensional data on the elevated ceiling side showed better agreement for temperature against the correlation, whereas predicted velocity data showed a wider spread around the correlation values.  相似文献   

14.
Electricity generation using membrane and salt bridge microbial fuel cells   总被引:29,自引:0,他引:29  
Min B  Cheng S  Logan BE 《Water research》2005,39(9):1675-1686
Microbial fuel cells (MFCs) can be used to directly generate electricity from the oxidation of dissolved organic matter, but optimization of MFCs will require that we know more about the factors that can increase power output such as the type of proton exchange system which can affect the system internal resistance. Power output in a MFC containing a proton exchange membrane was compared using a pure culture (Geobacter metallireducens) or a mixed culture (wastewater inoculum). Power output with either inoculum was essentially the same, with 40+/-1mW/m2 for G. metallireducens and 38+/-1mW/m2 for the wastewater inoculum. We also examined power output in a MFC with a salt bridge instead of a membrane system. Power output by the salt bridge MFC (inoculated with G. metallireducens) was 2.2mW/m2. The low power output was directly attributed to the higher internal resistance of the salt bridge system (19920+/-50 Ohms) compared to that of the membrane system (1286+/-1Ohms) based on measurements using impedance spectroscopy. In both systems, it was observed that oxygen diffusion from the cathode chamber into the anode chamber was a factor in power generation. Nitrogen gas sparging, L-cysteine (a chemical oxygen scavenger), or suspended cells (biological oxygen scavenger) were used to limit the effects of gas diffusion into the anode chamber. Nitrogen gas sparging, for example, increased overall Coulombic efficiency (47% or 55%) compared to that obtained without gas sparging (19%). These results show that increasing power densities in MFCs will require reducing the internal resistance of the system, and that methods are needed to control the dissolved oxygen flux into the anode chamber in order to increase overall Coulombic efficiency.  相似文献   

15.
The accurate computational modelling of airflows in transport tunnels is needed for regulations compliance, pollution and fire safety studies but remains a challenge for long domains because the computational time increases dramatically. We simulate air flows using the open-source code FDS 6.1.1 developed by NIST, USA. This work contains two parts. First we validate FDS6’s capability for predicting the flow conditions in the tunnel by comparing the predictions against on-site measurements in the Dartford Tunnel, London, UK, which is 1200 m long and 8.5 m in diameter. The comparison includes the average velocity and the profile downstream of an active jet fan up to 120 m. Secondly, we study the performance of the multi-scale modelling approach by splitting the tunnel into CFD domain and a one-dimensional domain using the FDS HVAC (Heating, Ventilation and Air Conditioning) feature. The work shows the average velocity predicted by FDS6 using both the full CFD and multi-scale approaches is within the experimental uncertainty of the measurements. Although the results showed the prediction of the downstream velocity profile near the jet fan falls outside the on-site measurements, the predictions at 80 m and beyond are accurate. Our results also show multi-scale modelling in FDS6 is as accurate as full CFD but up to 2.2 times faster and that computational savings increase with the length of the tunnel. This work sets the foundation for the next step in complexity with fire dynamics introduced to the tunnel.  相似文献   

16.
结合工程实例,探讨了炼钢厂增设1台转炉一次除尘风机及配套设施作为备用,增加了钢产量和转炉煤气产量,提高了经济效益。介绍了转炉煤气回收的工艺流程、主要设备及性能参数、给排水系统、电气系统、自动化控制系统和土建系统。总结了工程的技术特点。  相似文献   

17.
This paper presents the results of an experimental study of smoke movement in a 10-storey building. Eight full-scale experiments including four real fuel fires and four propane fires were conducted in the National Research Council Canada (NRCC)’s 10-storey experimental tower to generate smoke movement data that can be used for the validation of computer models. The heat release rate (HRR) of fire cannot be measured in this tower, so to estimate the HRR of fuel-package fires in this study, an approach using propane as a fuel was developed to reproduce the temperature distribution of various fuel-package tests.  相似文献   

18.
公路隧道火灾人员逃生与控制风速关系密切。本研究基于PHOENICS软件,建立了矩形、圆形及马蹄形断面下二、三及四车道9种计算模型,选取了大客车(20 MW)及无载重货车(30 MW)2种火源释放率, 选取了2.0 m/s、2.5 m/s、3.0 m/s、3.5 m/s及4.0 m/s的入口风速共计40种主要常见火灾工况,考虑了纵向通风对人体极限温度承受值的影响,采用了杨涛修正的动态火源释放率曲线及周勇狄修正的克拉尼公式,选用了适当的人员逃生条件,给出了每种工况8个特征时刻的10个特征点的温度值及曲线图,给出了燃烧5 min、12 min、30 min后火源处的纵横断面温度云图及中轴面烟气云图,给出了对应于火源燃烧位置上下游8个特征位置下人员逃生的忍受时间与逃离时间。研究得出:在基于人员逃生条件下矩形断面隧道在火源释放率为20 MW时二车道控制风速为3.0 m/s,三、四车道均为2.5 m/s;30 MW时二、三、四车道控制风速均为3.5 m/s,圆形与马蹄形断面隧道在火源释放率为20 MW时二、三、四车道控制风速均为3.5 m/s,30 MW时二车道控制风速均为4.0 m/s,三、四车道均为3.5 m/s。在火灾发生1 min后,人员以1 m/s从火源上下游进行疏散均可安全逃生。  相似文献   

19.
《Building and Environment》2003,38(4):533-542
An exhaust duct system in semiconductor factory is designed using the dynamic programming method (DPM), which considers system pressure equilibrium and the least life-cycle cost to derive the duct size and fan capacity. An example of alkaline gas exhaust system is provided to understand the characteristics of DPM and to compare with the conventional duct design methods. Since DPM contains the concept of minimizing the life-cycle cost, the design results not only guarantee each path to share the same pressure, but also bear a smaller cost than other methods. The limit on duct diameter or flow velocity is added to the computation process. As a result, all the derived outcomes satisfy the requirements on the range of duct diameter or flow velocity. The differences between the design and simulation (actual operation) results under DPM are much lower than those of other methods. Thus, an exhaust duct system that best approximates the actual operation may be designed using DPM.  相似文献   

20.
K. Lambert  B. Merci 《Fire Technology》2014,50(6):1517-1534
During fire service interventions, positive pressure ventilation (PPV) systems with mobile fans are often used to try and make (or keep) a staircase smoke free and to remove smoke from the fire rooms. The positioning (distance from the door opening) and inclination angle of the fan determine the effect of the PPV fans in the staircase. In the present paper results are discussed of an experimental study, performed at full-scale. Based on different sets of cold experiments, the impact is quantified of: the distance between the fan and the door; the inclination angle of a single fan; and the use of multiple fans. The closer the single fan is put to the door opening, the more effective the PPV becomes. Obviously, there is a trade-off with effectiveness of the fire service intervention, since the fan must not block the door opening. With respect to inclination, it is best to apply an inclination angle of 75° (i.e., an upward tilting of the fan axis by 15°, which is the maximum value tested) for ventilation at ground level with the fan tested. This ensures safety in the case of fire at ground level due to full coverage of the entry door opening, while only a relatively limited loss in PPV effectiveness is observed compared to a horizontal fan (in some cases, the PPV effectiveness is even higher with inclined fan). When the fire room is at a higher floor, an inclination angle of 90° (i.e. horizontal fan axis) can generate a higher average flow velocity, depending on the staircase configuration inside the building. If two fans are used, V-shape positioning is shown to be more effective than a set-up in series or in parallel. A V-shape with inner angle of 60° between the fan axes is more effective than an angle of 90°. If three fans are available, still higher average flow velocities are measured. Positioning two fans outside in V-shape and one fan inside at the bottom of the staircase is more effective than putting the three fans outside, On the other hand, the latter set-up may be required for firefighting tactics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号