首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A dynamic-type of ice-making cold thermal energy storage system using water–oil emusion with silane-coupler agent was investigated. In order to establish a suitable method by which slurry ice can be formed continuously in a tube without ice adhesion to the cooling wall, the effects of the tube materials of the heat exchanger, heat exchanger types and phase change materials on ice formation process were investigated. Experiments of ice formation were operated under various cooling conditions of flow rate of the mixture and temperature of cooling brine. It was found that using a fluoroplastics tube prevented ice from adhering to the tube under a wide range of the cooling conditions. By making thickness of the tube thinner and increasing heat transfer coefficient on the outside of the tube, performance of heat exchanger as an ice-making equipment was improved. The range of the suitable cooling conditions by using the water–oil emulsion as a phase change material was wider than that by using ethylene glycol aqueous solution.  相似文献   

2.
An emulsion, which was a mixture of silanol-aqueous solution and silicone oil, was investigated as a heat storage material for a dynamic type ice storage system. The emulsion was poured into a vessel, which was immersed into a constant temperature bath at a low temperature, and frozen with stirring. Using stainless steel vessels coated with PFA resin and PTFE vessels with different thickness, the experiments were carried out under various conditions of temperature. Measuring the temperature history in the vessel, overall heat transfer coefficients before the start of freezing and during the ice formation were obtained. The effects of the material of the cooling surface and the thermal resistance of the wall on the ice formation process were clarified. If the heat flux of the wall was less than a critical value, slurry ice was formed without adhesion to the cooling surface. The results obtained under the same condition of the thermal resistance proved that it was effective against ice adhesion to coat PFA resin inside the vessel. It was found by the experiments in which the PTFE vessels were used that the critical value of the heat flux was nearly constant regardless of the thermal resistance.  相似文献   

3.
A functional fluid composed of an oil–water mixture with an additive is transformed into an ice slurry by cooling while stirring. This paper describes a new continuous ice slurry formation method. Experiments were carried out by varying conditions such as the supply time of functional fluid, the stirrer torque, brine temperature and degree of supercooling. As a result, the characteristics of the ice formation and recovery processes were clarified. It was found that the ice particles gradually became uniform in size and spherical, and grew to 3.5 mm in diameter during about 10 h. The factors influencing the size of formed ice particles were discussed because the larger ice particles were expected to melt more rapidly. The ice particle size was found to increase with decreasing degree of supercooling and cooling rate, and with increasing stirrer wing diameter.  相似文献   

4.
A functional fluid was made by adding a small amount of additive to a water–silicone-oil mixture with 90 vol% water content, and the functional fluid was transformed into an ice slurry by cooling while stirring. The new ice formation system, which authors proposed for ice storage based on the results of previous studies, demonstrated that the ice slurry could be formed continuously for 10 h. In the current paper, experiments were carried out, varying operating conditions, and an optimal operating condition was determined to improve performance of the present system still more. From the experimental results, the conditions necessary to increase the amount of recovery ice were clarified. The time-dependencies of the shape and size of formed ice particles were also shown. Moreover, the reason why the freezing temperature of the functional fluid rose due to repetition of ice formation was clarified, and its measure was discussed. The present study then found that it was possible to form and recover a larger amount of ice than in previous attempts, given the rise in freezing temperature.  相似文献   

5.
A W/O type emulsion was developed as a new thermal material for ice storage. The water contents of the emulsions were 70, 80 and 90 vol%, and silicone oil was used. An amino group modified silicone oil with 0.9 vol% was used as a surface-active agent. The freezing points of those emulsions were 0 °C. However, due to the emulsion structure, the propagation rate of supercooling dissolution for each emulsion was very slow. Therefore, the propagation rate and maximum supercooling degree were estimated using probability, varying the water content of the emulsion, the method of the ice nucleus charging, and the size and number of ice nuclei. In addition, the influence of various parameters on the propagation rate and maximum supercooling degree was clarified.  相似文献   

6.
Ice storage is one technique for effective use of thermal energy. So, many studies on slush ice as a thermal storage material have been done. We have also been studying a suspension (slush ice) made from an oil-water mixture by cooling and stirring. From our study results, it was found that an additive having both an amino group (-NH2) and a silanol group (-SiOH) was essential to form a suspension with high IPF without adhesion of ice to the cooling wall. Moreover, ice particles formed in the suspension were dispersed and granular, and did not stick to each other. In the present paper, we carried out experiments to clarify the characteristics of the suspension formation process. From a thermal analysis of the substance formed in the suspension by difference scanning calorimeter (DSC), it was found that the substance was not ice but a compound of ice and additive. Then, at a very small depression of freezing point (about 7°C) all water in the mixture could be frozen by using the additive.  相似文献   

7.
Heat transfer of ice slurry flow based on ethanol–water mixture in a circular horizontal tube has been experimentally investigated. The secondary fluid was prepared by mixing ethanol and water to obtain initial alcohol concentration of 10.3% (initial freezing temperature -4.4 °C). The heat transfer tests were conducted to cover laminar and slightly turbulent flow with ice mass fraction varying from 0% to 22% depending on test performed. Measured heat transfer coefficients of ice slurry are found to be higher than those for single phase fluid, especially for laminar flow conditions and high ice mass fractions where the heat transfer is increased with a factor 2 in comparison to the single phase flow. In addition, experimentally determined heat transfer coefficients of ice slurry flow were compared to the analytical results, based on the correlation by Sieder and Tate for laminar single phase regime, by Dittus–Boelter for turbulent single phase regime and empirical correlation by Christensen and Kauffeld derived for laminar/turbulent ice slurry flow in circular horizontal tubes. It was found that the classical correlation proposed by Sieder and Tate for laminar forced convection in smooth straight circular ducts cannot be used for heat transfer prediction of ice slurry flow since it strongly underestimates measured values, while, for the turbulent flow regime the simple Dittus–Boelter relation predicts the heat transfer coefficient of ice slurry flow with high accuracy but only up to an ice mass fraction of 10% and Recf > 2300 regardless of imposed heat flux. For higher ice mass fractions and regardless of the flow regime, the correlation proposed by Christensen and Kauffeld gives good agreement with experimental results.  相似文献   

8.
A W/O (water-in-oil) emulsion was made from a water–lamp oil mixture with higher water content and a small amount of an additive of amino group-modified silicone oil, and the emulsion could be changed into an ice slurry by cooling with stirring. By using a new continuous ice formation system proposed by one of the authors of this paper, the ice slurry could be formed continuously and stably in an ice formation vessel made of stainless steel. From the experimental results, the conditions were clarified for realizing continuous ice formation for 10 h without ice adhesion to the cooling wall. Moreover, in order to propagate supercooling dissolution of the emulsion effectively and to decrease viscosity in the ice slurry, voltages were applied to the emulsion and ice slurry formed, respectively, and it was clarified that the voltage impression was effective for both.  相似文献   

9.
A new method of forming ice, which is one of the dynamic types of ice storage system, is studied. In the method a water-oil emulsion is cooled with stirring in a vessel and changed into an ice-oil and water suspension. A mixture of 10 vol% silicone-oil and 90 vol% water is emulsified with a small amount of an additive. Silane-couplers are tested as the additive and effects of the additive on ice formation process are investigated. Cooling rate is changed and vessels made of various materials are tested. It is proved that the present method has the following characteristics. Ice–oil and water suspension (slush ice) which has a good fluidity is able to be formed without adhering to the cooling surface. Ice in the suspension is granular and dispersed state and the suspension with more than 70% of ice packing factor (IPF) is also able to be formed. The suspension with the high IPF can be preserved for a long time in the granular state.  相似文献   

10.
This study focuses on an emulsion as a new thermal storage material for ice storage. Two types of emulsions were formed using an oil–water mixture with a small amount of additive. A silicone, light and lump oils were used. The water contents of the emulsions were 70, 80 and 90%. The additive was an amino group modified silicone oil. No depression of freezing point was observed for the emulsions because of their hydrophobic properties. In order to determine the structure of the emulsions, their electrical resistances were measured. Moreover, components of the liquids separating from the emulsions were analyzed. The results indicated that one emulsion was a W/O type emulsion, while the other was an O/W type. Finally, adaptability of the two emulsions to ice storage was discussed, it was concluded that a high performance ice slurry could be formed by the W/O type emulsion.  相似文献   

11.
We have been studying on ice slurry in a dynamic type ice storage system. The ice slurry has many good characteristics. The ice slurry can be made from a solution. When designing the ice storage system using this ice slurry, thermal conductivity of the ice slurry is essential.When thermal conductivity of the ice slurry made from a solution is measured by a transient line heat-source technique, a measurement value of thermal conductivity is affected by a latent heat of fusion of ice. Therefore, the thermal conductivity measured is apparent thermal conductivity. In this study, influences of Stefan number, initial concentration of the solution, initial solid fraction (initial IPF) and Fourier number on the thermal conductivity was analytically discussed to improve measurement accuracy of the thermal conductivity of ice slurry in the transient line heat-source technique.  相似文献   

12.
Ice slurry performance in a concentric corrugated tube heat exchanger is experimentally studied in this work in order to compare experimental results to theoretical prediction obtained using the correlations proposed in previous papers. Once the validity of those correlations is verified, the behaviour of the studied heat exchanger is analyzed for different ice slurry flow conditions and compared to the results obtained when a heterogeneous storage is used and only carrier fluid flows through the heat exchanger. According to the performance evaluation criterion used – variation in heat transfer rate for equal pressure drop and surface area – the most remarkable conclusion obtained is that slurry improves the behaviour of the heat exchanger studied for all the cases analyzed, although the increase in heat transfer rate is always lower than 15%, being in most cases lower than 5%.  相似文献   

13.
In this study, the inverse heat transfer method is applied to shape identification for the ice layer within the cylindrical capsule in cold storage system. The approach is constructed by combining the curvilinear grid generation scheme, the direct problem solver, the conjugate gradient optimization method, and the redistribution method. According to the practical condition of freezing ice, shape identification for the water–ice interface based on the data of the outer surface temperature is attempted. Results show that the profile of the water–ice interface is possible to be identified by using the inverse heat transfer approach and the accuracy of the ice shape identification is dependent on the uncertainty of the outer surface temperature data, the Biot number, the thickness of the ice layer, and the geometric configuration as well.  相似文献   

14.
For ice storage, one of authors has studied new ice slurry formed by cooling a water–oil mixture with stirring. When the mixture is stirred in a vessel, oil is charged by static electricity due to friction. If the vessel wall can attract charged oil, prevention of ice adhesion to the wall may be realized. Therefore, in this paper, in order to observe behavior of charged water–oil droplet or mixture in electric field by a high speed camera or video camera, two types of experiments were carried out. One was that the water–oil droplet charged by static electricity was made to fall plumb down between two electrodes with electric field or without electric field, varying the water content of droplet. The other was that a constant voltage was applied on the vessel filled with the water–oil mixture stirred. From experiments, it was confirmed that attracting force between the charged wall (electrode) and charged oil acted.  相似文献   

15.
The heat transfer characteristics were experimentally investigated for ice slurry made from 6.5% ethylene glycol–water solution flow in a 13.84 mm internal diameter, 1500 mm long horizontal copper tube. The ice slurry was heated by hot water circulated at the annulus gap of the test section. Experiments of the melting process were conducted with changing the ice slurry mass flux and the ice fraction from 800 to 3500 kg/m2 s and 0–25%, respectively. During the experiment, it was found that the measured heat transfer rates increase with the mass flow rate and ice fraction; however, the effect of ice fraction appears not to be significant at high mass flow rate. At the region of low mass flow rates, a sharp increase in the heat transfer coefficient was observed when the ice fraction was more than 10%.  相似文献   

16.
One of the main components of an ice slurry system is the melting heat exchanger, in which ice slurry absorbs heat resulting in the melting of ice crystals. Design calculations of melting heat exchangers are mainly based on heat transfer and pressure drop data, but recent experimental studies have shown that superheating of ice slurry should also be considered. This paper presents ice slurry melting experiments with a tube-in-tube heat transfer coil. The experimental results indicate that operating conditions such as ice slurry velocity, heat flux, solute concentration, ice fraction, and ice crystal size determine the degree of superheating. The various influences are explained by considering the melting process as a two-stage process consisting of the heat transfer between wall and liquid and the combined heat and mass transfer between liquid and crystals. Bigger ice crystals and higher solute concentrations decrease the rate of the second stage and therefore increase the degree of superheating.  相似文献   

17.
One of the authors has proposed a novel transport/storage system for the waste cold from the gasification process of liquefied natural gas (LNG), which consists of an evaporator, a cold trap, and a pipeline. In order to estimate the performance of this system, one should know the pressure in the evaporator, in which evaporation–freezing of a PCM occurs, and in the cold trap, as well as the pressure drop of the pipeline due to the flow of low pressure vapor of the PCM. In this paper, the cooling/freezing phenomena of a water droplet due to evaporation in an evacuated chamber was experimentally examined, and the heat transfer dominating the evaporation-freezing phenomena was investigated in order to estimate the pressure in the evaporator. From the results, it was shown that the water droplet in the evacuated cell is effectively cooled by the evaporation of water itself, and is frozen within a few seconds through a remarkable supercooling state, and that the cooling rate of the water droplets were dominated by heat transfer within the droplet under the abrupt evacuation condition. The later result means that, in order to obtain an ice particle by evaporation–freezing, the surroundings of the water droplet should be evacuated at the pressure as low as the saturate pressure of water at the maximum supercooling temperature of the droplet.  相似文献   

18.
This study focused ice slurry formation in an ice storage system using W/O emulsions with 70 and 80% water contents. Emulsions consisted of a silicone oil–water mixture with a small amount of amino-group-modified silicone oil additive. Ice slurry was formed by cooling the emulsion without ice adhesion to the cooling wall, as water in the emulsion did not directly contact the cooling wall. As the structure of W/O emulsion slowed the propagation rate of supercooling dissolution, voltage and ultrasonic wave were applied to the W/O emulsion to propagate dissolution more quickly and decrease maximum supercooling degree, respectively. Thus, the effects of voltage and ultrasonic wave applications on propagation rate were clarified.  相似文献   

19.
In this paper we present results of the studies of ice slurry flow in horizontal tubes. The possibility of treating the rheological parameters of ice slurry as being those of Bingham fluid was confirmed. The values of parameters (mass fraction, flow velocity) corresponding to the laminar, intermediate and turbulent flow were determined which permits to optimize the flow in the systems working with this cooling agent. Critical flow velocity and mass fraction of ice values were determined thereby; they correspond to a change in character of an ice slurry flow from a laminar to turbulent motion. Experimental results were compared to the analytical results, based on the Hedström and Tomita algorithms (the laminar and turbulent flow, respectively). The comparison showed a very good agreement between these data.  相似文献   

20.
This article experimentally investigates the thermal performance of a thermal battery used in the ice storage air-conditioning system as a subcooler. The thermal battery utilizes the superior heat transfer characteristics of two-phase closed thermosyphon and eliminates the drawbacks found in convectional energy storage systems. Experimental investigations are first conducted to study the thermal behavior of thermal battery under different charge temperatures (−5 °C to −9 °C) in which water is used as the energy storage material. This study also examines the thermal performance of the subcooled ice storage air conditioner under different cooling loads. Experimental data of temperature variation of water, ice fraction, refrigerant mass flow rate and coefficient of performance (COP) are obtained. The results show that supercooling phenomenon appears in the water and it can be ended when the charge temperature is lower than −6 °C. The system gives 28% more cooling capacity and 8% higher COP by the contribution of the thermal battery used as a subcooler.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号